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In this Letter, the exact accelerating string solution of a heavy quark–antiquark pair is found in AdS5
space. On the accelerating string, there is a particular scale which separates the radiation and the heavy
quark. This scale is explicitly shown to be an event horizon in the proper frame of the heavy quark.
Furthermore, we find a new correspondence, which relates the horizon in AdS5 space on the gravity
theory side to the Unruh temperature in Minkowski space on the field theory side of the AdS/CFT
correspondence. p⊥-broadening and pL-broadening of the heavy quark due to radiation are computed
using the AdS/CFT correspondence.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In Ref. [1], in order to describe bare quark energy loss in a finite
size plasma, a brief description of the solution for an accelerating
string in AdS5 space was given, corresponding to a heavy quark–
antiquark pair accelerated in opposite directions. In this Letter, we
will develop and describe in detail the theory of the accelerating
string in AdS5 spacetime.1 The objective of this Letter is to inves-
tigate the uniformly accelerating heavy quark–antiquark pair with
a connecting string in AdS5 spacetime. We find that there exists
an event horizon on the string which separates the heavy quark
and radiation during the acceleration. In other words, the upper
part of the string is moving with the heavy quark, however, the
lower part the string corresponds to radiated energy. Moreover, the
event horizon is then shown to correspond to the well-known Un-
ruh temperature [4] in a classical gravity calculation. In the end,
the energy loss and p⊥-broadening due to acceleration radiation
are studied.

2. The accelerating string solution

We set up our accelerating string calculation as follows:
a quark–antiquark pair is imbedded in a brane located at u = um ,

✩ This work is supported in part by the US Department of Energy.
E-mail address: bowen@phys.columbia.edu.

1 There is a similar numerical study of the accelerating string in Ref. [2] in the
black three-brane metric of AdS5 space. However, our focus in this Letter is to study
the exact accelerating string solution in vacuum AdS5 spacetime. There is also a
recent interesting study of the accelerating in Ref. [3] which considers a general
time-dependent acceleration. The simplicity of our discussion comes about because
we only consider constant acceleration in the vacuum for which we are able to find
an exact analytic solution.

and a net electric field E f is imposed in the brane which accel-
erates the quark and antiquark at a constant acceleration in their
own proper frame (an additional small electric field E f 2 which
balances the attracting force between the quark and antiquark is
also understood).

The metric of the resulting vacuum AdS5 space can be written
as

ds2 = R2
[

du2

u2
− u2dt2 + u2(dx2 + dy2 + dz2)]

= R2

w2

(
dw2 − dt2 + dx2 + dy2 + dz2), (1)

where R is the curvature radius of the AdS5 space and w = 1
u . The

dynamics of a classical string is characterized by the Nambu–Goto
action,

S = −T0

∫
dτ dσ

√−det gab, (2)

where (τ ,σ ) are the string world-sheet coordinates, and
−det gab = −g is the determinant of the induced metric. T0 is
the string tension. We define Xμ(τ ,σ ) as a map from the string
world-sheet to the five-dimensional spacetime, and introduce the
following notation for derivatives: Ẋμ = ∂τ Xμ and X ′μ = ∂σ Xμ .
When one chooses a static gauge by setting (τ ,σ ) = (t, u), and
defines Xμ = (t, u, x(t, u),0,0), it is straightforward to find that

−det gab = (
Ẋμ X ′

μ

)2 − (
Ẋμ Ẋμ

)(
X ′μ X ′

μ

)
= R4(1 − ẋ2 + u4x′ 2). (3)

Therefore, the equation of motion of the classical string reads

∂

∂u

(
u4x′
√−g

)
− ∂

∂t

(
ẋ√−g

)
= 0. (4)
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Fig. 1. Illustrating the accelerating string.

In general, this equation is a non-linear differential equation
which involves two variables and two derivatives. Thus it is noto-
riously hard to solve directly when x(t, u) is a non-trivial function
of (t, u). Fortunately, we have been able to find the exact solution
which corresponds to the accelerating string. The solution reads,

x = ±
√

t2 + b2 − 1

u2
, (5)

where the + part represents the right moving part of the string
and the − part yields the left moving part of the string, together
with the smooth connection in the middle. The quark and anti-
quark pair are accelerating and moving away from each other. The
constant b can be fixed by the boundary condition. It is very easy
to check that Eq. (5) satisfies the equation of motion by noting that√−g/R4 = b√

t2+b2−1/u2
.

Following Herzog et al. [2], one can compute the canonical mo-
mentum densities associated with the accelerating string,

π0
μ = −T0

( Ẋν X ′
ν)X ′

μ − (X ′ν X ′
ν) Ẋμ√−g

, (6)

π1
μ = −T0

( Ẋν X ′
ν) Ẋμ − ( Ẋν Ẋν)X ′

μ√−g
. (7)

The energy density is given by π0
t ,

dE

du
= −π0

t = T0 R4

√−g

(
1 + u4x′ 2). (8)

Thus the total energy of the right half of the string at time t is,

um∫
ub

dE

du
du = T0 R2um

b

√
t2 + b2 − 1

u2
m

. (9)

Moreover, the energy flow is given by π1
t ,

dE

dt
= π1

t = T0 R4

√−g
u4x′ ẋ. (10)

Assuming that the quark carries a unite charge and E f being the
external electric field as defined above, thus the force acting on
the top of the string is just qE f = E f , and the energy being put
into the system by the external force E f is E f (X(t) − X(0)). Thus
the net energy2 being put into the right half string from 0 to t is,

2 The total energy being put into the system should be the sum of work done by
E f and E f 2. However, the part from E f 2 balances the Coulomb potential between
quark and antiquark as part of our setup in the beginning of the calculation. Thus
only E f contributes to the non-Coulomb net energy increase.

t∫
0

dE

dt
dt

∣∣∣∣
u=um

= T0 R2um

b

(√
t2 + b2 − 1

u2
m

−
√

b2 − 1

u2
m

)

= T0 R2um

b

(
X(t) − X(0)

)
, (11)

with the second term in the bracket being the initial energy de-
posited in the string. Also b2 − 1

u2
m

� 0 is assumed for consistency.

Therefore, from energy conservation, the energy increase of the
system should be equal to E f (X(t) − X(0)). One can easily fix the

constant b by setting E f = T0 R2um
b , then,

b = M

E f
=

√
λum

2π E f
, (12)

where M = T0 R2um is the mass of the heavy quark and T0 R2 =√
λ

2π according to the Ads/CFT correspondence [5–7]. It is now very
easy to see the physical interpretation of the constant b as the
reciprocal of the constant acceleration a, i.e., a = E f

M = 1
b .

In addition, although ∂x
∂t = t√

t2+b2−1/u2
exceeds 1 when u be-

comes smaller than 1/b, one can compute the speed which energy
travels by the following,

v = ∂x

∂t
+ ∂x

∂u

du

dt
= t

t2 + b2

√
t2 + b2 − 1

u2
, (13)

and find that v � 1 at all times. In arriving at the above result, one
needs to look at the hypersurface where energy is constant (for
example, one can focus on a lower segment of string with constant
energy. One of the ends of this segment is taken as the bottom of
the whole string and the other end can be taken to be somewhere
u < 1/b),

E(u, t) = C ⇒ ∂ E

∂t
+ ∂ E

∂u

du

dt
= 0. (14)

Then, one can obtain du
dt = − ∂ E

∂t / ∂ E
∂u = − ut

t2+b2 according to the

energy flow along the string. Here du
dt simply implies that the sep-

aration between the lower segment and the rest part of the string
has to move downwards at the rate which we found above. There-
fore, although some part of the string may travel with a speed
beyond speed of light, the energy in the string can only travel at a
speed smaller than speed of light. This indicates that the accelerat-
ing string solution is consistent with physical expectations. Finally,
the Lorentz boost factor of the string reads,

coshη = 1√
1 − v2

= t2 + b2√
(t2 + b2)b2 + t2

u2

, (15)

and it reduces to t/b in the large t and u limits.

3. The event horizon and the Unruh temperature

In the following, we employ a transformation which transforms
our system from AdS5 to a generalized Rindler spacetime. To a
uniformly accelerated observer, Minkowski spacetime becomes the
so-called Rinder spacetime. With properly chosen parameters, the
heavy quark and the string look static in our generalized Rindler
spacetime. In other words, we choose to transform to the proper
frame of the accelerating string. This frame is an accelerating frame
with a constant acceleration a. The transform reads,

x =
√

b2 − r2 exp

(
α

b

)
cosh

τ

b
,

t =
√

b2 − r2 exp

(
α

b

)
sinh

τ

b
,

w = r exp

(
α

b

)
. (16)
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