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Where does Hawking radiation originate? A common picture is that it arises from excitations very near 
or at the horizon, and this viewpoint has supported the “firewall” argument and arguments for a key 
role for the UV-dependent entanglement entropy in describing the quantum mechanics of black holes. 
However, closer investigation of both the total emission rate and the stress tensor of Hawking radiation 
supports the statement that its source is a near-horizon quantum region, or “atmosphere,” whose 
radial extent is set by the horizon radius scale. This is potentially important, since Hawking radiation 
needs to be modified to restore unitarity, and a natural assumption is that the scales relevant to such 
modifications are comparable to those governing the Hawking radiation. Moreover, related discussion 
suggests a resolution to questions regarding extra energy flux in “nonviolent” scenarios, that does not 
spoil black hole thermodynamics as governed by the Bekenstein–Hawking entropy.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Hawking radiation is commonly perceived as originating from 
the horizon of a black hole. One reason for this is the structure of 
Hawking’s original calculation [1]: highly blueshifted modes just 
outside the horizon, which are entangled with similar inside exci-
tations, can be described as evolving to become the radiation. This 
view is buttressed by a nice match to the thermal description of 
the observations of detectors at constant radius r. These detectors 
are properly accelerating, and so experience the Unruh effect with 
a temperature that is related to Hawking’s by a blueshift, in accord 
with the Tolman law; see for example [2].

It is important, however, to check this picture, since the require-
ment of unitarity of the black hole decay tells us that the Hawking 
radiation must be modified. If we wish to understand what kind 
of modification is needed, and where it occurs, we should first 
fully understand the properties of the Hawking radiation, which 
is responsible for the problem of information loss to begin with. 
This is emphasized, for example, by the structure of the “fire-
wall” argument: if one presupposes a near-horizon origin of the 
Hawking radiation, and that the corresponding near-horizon exci-
tations must therefore be modified in order to restore unitarity, 
one concludes that the state is very singular, with an enormous 
energy density also rendering the spacetime geometry singular at 
the horizon [3–6].

So, in order to better understand both where unitarizing mod-
ifications might appear, and also other aspects of the thermody-
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namics of black holes, we seek other tests for the source of the 
Hawking radiation.

One way to infer the size of a radiating body is via the Stefan–
Boltzmann law, giving the radiated power (in the case of two po-
larization degrees of freedom, e.g. photons)

dE

dt
= σS AT 4 (1)

in terms of the area A of an emitting black body, and its temper-
ature; here σS = π2/60 is the Stefan–Boltzmann constant. From 
this, one finds the area of the emitting surface from the power 
and the temperature, which for Hawking radiation we expect to 
be the Hawking temperature. A complication, however, is that a 
black hole emits as a gray body – it is not precisely thermal. But, 
once gray-body factors are taken into account, numerical calcu-
lation [7] shows that the emission rate exceeds the rate (1) for 
particles with spin ≤ 1 if A is taken to be the horizon area – 
suggesting a larger effective emitting surface. Specifically, consider-
ing for example photon emission, ref. [7] (see eq. (29) and below) 
shows a total rate for a black hole of mass M

dE

dt
= 3.4 × 10−5M−2 , (2)

as compared to a rate

dE

dt
= 2.1 × 10−5M−2 (3)

from (1) if T = 1/(8π M) is the Hawking temperature and A =
16π M2 the horizon area.
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The calculation and conclusions can be sharpened by looking at 
the power spectrum, which can be expressed as

dE

dtdω
= 1

π

∑
l

(2l + 1)ω
�ωl

eβω − 1
= 1

π2

ω3

eβω − 1
σ(ω) (4)

for two degrees of freedom, where l is the orbital angular momen-
tum, �ωl are the gray-body factors, and β = 1/T . In the second 
equality, the spectrum has been related to the absorption cross 
section at frequency ω,

σ(ω) = π

ω2

∑
l

(2l + 1)�ωl . (5)

For a spherical blackbody of area A = 4πr2, σ(ω) = πr2 = A/4, 
and (1) is reproduced. In the case of Hawking radiation, the gray-
body factors vary nontrivially with ω, but in the large-ω limit,

σ(ω) → π R2
a (6)

where

Ra = 3
√

3M = 3
√

3

2
R (7)

and R = 2M is the Schwarzschild radius. This limit is the geomet-
ric-optics, massless limit, and so this result can be understood 
from the effective potential (see e.g. [8]) for a classical massless 
particle. Here absorption is perfect for l < ωRa , and vanishes for 
l > ωRa , and so

�ωl ≈ θ(ωRa − l) , (8)

giving (6), and yielding a high-energy power spectrum (4) match-
ing that of [7].

Thus the effective emitting area for the Hawking radiation can 
be read off from this high-energy emission, and is A = 4π R2

a ; the 
effective emitting radius Ra is considerably outside the horizon ra-
dius, which is indicative of a source well outside the horizon. Note 
that for lower-energy modes, where quantum effects become more 
relevant, the gray-body factors are suppressed from unity. Since 
most of the emission is in such modes, this yields [7] a total power 
(2) that is suppressed from (1) evaluated with A = 4π R2

a .
Since the statement that the source of the Hawking radiation 

is well outside the horizon runs contrary to various perceptions, 
we should try to test it by other means. A more refined picture of 
the Hawking radiation comes from examining its stress tensor. This 
is particularly tractable in the case of a two-dimensional metric, 
taken to be of the form

ds2 = − f (r)dt2 + dr2

f (r)
= f (r)(−dt2 + dx2) = − f (r)dx+dx− (9)

where

dx = dr

f (r)
, (10)

and x± = t ± x. The conformal coordinate x is sometimes referred 
to as a tortoise coordinate. For the two-dimensional black hole of 
[9], studied in the soluble collapse models of [10],

f (r) = 1 − e−2(r−R) . (11)

However, the metric (9) may also be thought of the metric induced 
on a cosmic string that threads a higher-dimensional black hole, 
allowing us to probe that case as well.

The expectation value of the stress tensor for Hawking radiation 
can be computed via the conformal anomaly [11,10]:

〈T−−〉 = 1

24π

[
∂2− f

f
− 3

2

(∂− f )2

f 2

]
+ t−(x−)

〈T++〉 = 1

24π

[
∂2+ f

f
− 3

2

(∂+ f )2

f 2

]
+ t+(x+)

〈T+−〉 = − 1

24π

(
∂+∂− f

f
− ∂+ f ∂− f

f 2

)
(12)

where t−(x−) and t+(x+) are arbitrary functions characterizing the 
particular state. It is readily verified that (12) is conserved. Indeed, 
the conformal anomaly determines 〈T+−〉, and then conservation 
fixes 〈T−−〉 and 〈T++〉, up to the functions t± .

Eq. (12) may be written in terms of r-derivatives of f , denoted 
by primes, using (10). This gives

〈T−−〉 = 1

96π

[
f f ′′ − 1

2
( f ′)2

]
+ t−

〈T++〉 = 1

96π

[
f f ′′ − 1

2
( f ′)2

]
+ t+

〈T+−〉 = 1

96π
f f ′′ . (13)

For the Hartle–Hawking [12] or Unruh [13] states, regularity of 
〈Tμν〉 at the future horizon, checked in terms of the Kruskal com-
ponents of 〈Tμν 〉, then implies

t− = 1

192π
[ f ′(R)]2 . (14)

Since the other terms in 〈T−−〉 vanish asymptotically at r → ∞, 
t− is the asymptotic Hawking flux. For the Hartle–Hawking vac-
uum, this flux is balanced by incoming flux, t+ = t− , and 〈Tμν〉 is 
also regular on the past horizon. For the Unruh vacuum, t+ = 0, so 
there is no incoming asymptotic flux, but there is a negative en-
ergy flux into the horizon. Note that 〈T−−〉 also vanishes to next
order in r − R , as can be readily verified by taking its r-derivative, 
from (13); that is, 〈T−−〉 vanishes as f 2(r) at r = R .

We now see properties that support the preceding claim. The 
outward Hawking flux 〈T−−〉 can be converted into that in an or-
thonormal frame (cf. (9)) by multiplying by 1/ f , but the resulting 
proper 〈T−̂−̂〉 still vanishes at the horizon; the proper outward flux 
builds up from there, over a range of r ∼ R , to its asymptotic value. 
That is, the outgoing Hawking flux, as measured by its stress ten-
sor, originates not at the horizon, but in a larger quantum region 
or atmosphere. For the Hartle–Hawking vacuum, 〈T 0̂1̂〉 identically 
vanishes due to cancellation between ingoing and outgoing flux. 
For the Unruh vacuum, 〈T 0̂1̂〉 is nonvanishing at the horizon due to 
the negative influx [14]1 of energy described by 〈T++〉. This energy 
flux at a near-horizon coordinate r does satisfy a two-dimensional 
version of the Stefan–Boltzmann law of the form

dE

dt
= −〈T 0̂1̂〉 = σ2T 2(r) , (15)

where T (r) is the locally blueshifted temperature, which is seen 
by the locally accelerated observers at constant r, and σ2 is a 

1 Indeed, following the first appearance of this paper, the author became aware 
of [14] which gave closely related arguments, for an origin of Hawking particles in 
the vicinity of a black hole rather than from the collapsing body that formed it. Un-
ruh’s arguments were based on 1) the fact that energy appears outside the black 
hole and is compensated by the negative influx; 2) the failure of infalling observers 
to detect particles near the horizon (see also [15]); and 3) the existence of stim-
ulated emission due to an emitter falling into a black hole. Refs. [16,17] have also 
investigated the role of the negative energy density at the horizon, and pointed out 
vanishing of an effective “Tolman” temperature there, and ref. [18] makes possibly 
related comments about negative influx.
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