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The first direct search for lepton-flavour-violating decays of the recently discovered Higgs boson (H) is 
described. The search is performed in the H → μτe and H → μτh channels, where τe and τh are tau 
leptons reconstructed in the electronic and hadronic decay channels, respectively. The data sample used 
in this search was collected in pp collisions at a centre-of-mass energy of 

√
s = 8 TeV with the CMS 

experiment at the CERN LHC and corresponds to an integrated luminosity of 19.7 fb−1. The sensitivity 
of the search is an order of magnitude better than the existing indirect limits. A slight excess of 
signal events with a significance of 2.4 standard deviations is observed. The p-value of this excess at 
MH = 125 GeV is 0.010. The best fit branching fraction is B(H → μτ) = (0.84+0.39

−0.37)%. A constraint on the 
branching fraction, B(H → μτ) < 1.51% at 95% confidence level is set. This limit is subsequently used to 
constrain the μ–τ Yukawa couplings to be less than 3.6 × 10−3.
© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of the Higgs boson (H) [1–3] has generated great 
interest in exploring its properties. In the standard model (SM), 
lepton-flavour-violating (LFV) decays are forbidden if the theory 
is to be renormalizable [4]. If this requirement is relaxed, so the 
theory is valid only to a finite mass scale, then LFV couplings 
may be introduced. LFV decays can occur naturally in models with 
more than one Higgs doublet without abandoning renormalizabil-
ity [5]. They also arise in supersymmetric models [6–9], composite 
Higgs boson models [10,11], models with flavour symmetries [12], 
Randall–Sundrum models [13–15], and many others [16–23]. The 
presence of LFV couplings would allow μ → e, τ → μ and τ → e
transitions to proceed via a virtual Higgs boson [24,25]. The ex-
perimental limits on these have recently been translated into 
constraints on the branching fractions B(H → eμ, μτ, eτ ) [4,26]. 
The μ → e transition is strongly constrained by null search re-
sults for μ → eγ [27], B(H → μe) < O(10−8). However, the con-
straints on τ → μ and τ → e are much less stringent. These come 
from searches for τ → μγ [28,29] and other rare τ decays [30], 
τ → eγ , μ and eg − 2 measurements [27]. Exclusion limits on 
the electron and muon electric dipole moments [31] also provide 
complementary constraints. These lead to the much less restrictive 
limits: B(H → μτ) < O(10%), B(H → eτ ) < O(10%). The obser-
vation of the Higgs boson offers the possibility of sensitive direct 
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searches for LFV Higgs boson decays. To date no dedicated searches 
have been performed. However, a theoretical reinterpretation of 
the ATLAS H → ττ search results in terms of LFV decays by an 
independent group has been used to set limits at the 95% confi-
dence level (CL) of B(H → μτ) < 13%, B(H → eτ ) < 13% [4].

This letter describes a search for a LFV decay of a Higgs boson 
with MH = 125 GeV at the CMS experiment. The 2012 dataset col-
lected at a centre-of-mass energy of 

√
s = 8 TeV corresponding to 

an integrated luminosity of 19.7 fb−1 is used. The search is per-
formed in two channels, H → μτe and H → μτh, where τe and τh
are tau leptons reconstructed in the electronic and hadronic de-
cay channels, respectively. The signature is very similar to the SM 
H → τμτe and H → τμτh decays, where τμ is a tau lepton decay-
ing muonically, which have been studied by CMS in Refs. [32,33]
and ATLAS in Ref. [34], but with some significant kinematic differ-
ences. The μ comes promptly from the LFV H decay and tends to 
have a larger momentum than in the SM case. There is only one 
tau lepton so there are typically fewer neutrinos in the decay. They 
are highly Lorentz boosted and tend to be collinear with the visible 
τ decay products.

The two channels are divided into categories based on the 
number of jets in order to separate the different H boson pro-
duction mechanisms. The signal sensitivity is enhanced by using 
different selection criteria for each category. The dominant pro-
duction mechanism is gluon–gluon fusion but there is also a sig-
nificant contribution from vector boson fusion which is enhanced 
by requiring jets to be present in the event. The dominant back-
ground in the H → μτe channel is Z → ττ . Other much smaller 
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backgrounds come from misidentified leptons in W + jets, QCD 
multijets and tt events. In the H → μτh channel the dominant 
background arises from misidentified τ leptons in W + jets, QCD 
multijets and tt events. Less significant backgrounds come from 
Z → ττ and Z + jets. The principal backgrounds are estimated us-
ing data. There is also a small background from SM H decays which 
is estimated with simulation. The presence or absence of a signal is 
established by fitting a mass distribution for signal and background 
using the asymptotic CLs criterion [35,36]. A “blind” analysis was 
performed. The data in the signal region were not studied until 
the selection criteria had been fixed and the background estimate 
finalized.

2. Detector and data sets

A detailed description of the CMS detector, together with a de-
scription of the coordinate system used and the relevant kinematic 
variables, can be found in Ref. [37]. The momenta of charged parti-
cles are measured with a silicon pixel and strip tracker that covers 
the pseudorapidity range |η| < 2.5 and is inside a 3.8 T axial mag-
netic field. Surrounding the tracker are a lead tungstate crystal 
electromagnetic calorimeter (ECAL) and a brass/scintillator hadron 
calorimeter, both consisting of a barrel assembly and two endcaps 
that extend to a pseudorapidity range of |η| < 3.0. A steel/quartz-
fiber Cherenkov forward detector extends the calorimetric coverage 
to |η| < 5.0. The outermost component of the CMS detector is the 
muon system, consisting of gas-ionization detectors placed in the 
steel flux-return yoke of the magnet to measure the momenta of 
muons traversing the detector. The two-level CMS trigger system 
selects events of interest for permanent storage. The first trigger 
level, composed of custom hardware processors, uses information 
from the calorimeters and muon detectors to select events in less 
than 3.2 μs. The high-level trigger software algorithms, executed 
on a farm of commercial processors, further reduce the event rate 
using information from all detector subsystems.

The H → μτh channel selection begins by requiring a single μ
trigger with a transverse momentum threshold pμ

T > 24 GeV in 
the pseudorapidity range |η| < 2.1, while the H → μτe channel 
requires a μ–e trigger with pT thresholds of 17 GeV (|η| < 2.4) for 
the μ and 8 GeV (|η| < 2.5) for the e. Loose e and μ identifica-
tion criteria are applied at the trigger level. The leptons are also 
required to be isolated from other tracks and calorimeter energy 
deposits to maintain an acceptable trigger rate.

Simulated samples of signal and background events are pro-
duced using various Monte Carlo (MC) event generators, with the 
CMS detector response modeled with Geant4 [38]. Higgs bosons 
are produced in proton–proton collisions predominantly by gluon–
gluon fusion, but also by vector boson fusion and in association 
with a W or Z boson. It is assumed that the rate of new decays 
of the H are sufficiently small that the narrow width approxima-
tion can be used. The LFV H decay samples are produced with
pythia 8.175 [39]. The background event samples with a SM H
are generated by powheg 1.0 [40–44] with the τ decays mod-
eled by tauola [45]. The MadGraph 5.1 [46] generator is used for 
Z + jets, W + jets, tt , and diboson production, and powheg for sin-
gle top-quark production. The powheg and MadGraph generators 
are interfaced with pythia for parton shower and fragmentation.

3. Event reconstruction

A particle-flow (PF) algorithm [47,48] combines the informa-
tion from all CMS sub-detectors to identify and reconstruct the 
individual particles emerging from all vertices: charged hadrons, 
neutral hadrons, photons, muons, and electrons. These particles are 
then used to reconstruct jets, hadronic τ decays, and to quantify 

the isolation of leptons and photons. The missing transverse en-
ergy vector is the negative vector sum of all particle transverse 
momenta and its magnitude is referred to as Emiss

T . The variable 
�R = √

(�η)2 + (�φ)2 is used to measure the separation between 
reconstructed objects in the detector, where φ is the azimuthal 
angle (in radians) of the trajectory of the object in the plane trans-
verse to the direction of the proton beams.

The large number of proton interactions occurring per LHC 
bunch crossing (pileup), with an average of 21 in 2012, makes the 
identification of the vertex corresponding to the hard-scattering 
process nontrivial. This affects most of the object reconstruction 
algorithms: jets, lepton isolation, etc. The tracking system is able 
to separate collision vertices as close as 0.5 mm along the beam 
direction [49]. For each vertex, the sum of the p2

T of all tracks as-
sociated with the vertex is computed. The vertex for which this 
quantity is the largest is assumed to correspond to the hard-
scattering process, and is referred to as the primary vertex in the 
event reconstruction.

Muons are reconstructed using two algorithms [50]: one in 
which tracks in the silicon tracker are matched to signals in the 
muon detectors, and another in which a global track fit is per-
formed, seeded by signals in the muon systems. The muon can-
didates used in the analysis are required to be successfully re-
constructed by both algorithms. Further identification criteria are 
imposed on the muon candidates to reduce the fraction of tracks 
misidentified as muons. These include the number of measure-
ments in the tracker and in the muon systems, the fit quality of 
the global muon track and its consistency with the primary vertex.

Electron reconstruction requires the matching of an energy 
cluster in the ECAL with a track in the silicon tracker [51,52]. 
Identification criteria based on the ECAL shower shape, match-
ing between the track and the ECAL cluster, and consistency with 
the primary vertex are imposed. Electron identification relies on a 
multivariate technique that combines observables sensitive to the 
amount of bremsstrahlung along the electron trajectory, the geo-
metrical and momentum matching between the electron trajectory 
and associated clusters, as well as shower-shape observables. Addi-
tional requirements are imposed to remove electrons produced by 
photon conversions.

Jets are reconstructed from all the PF objects using the anti-kT
jet clustering algorithm [53] implemented in FastJet [54], with 
a distance parameter of 0.5. The jet energy is corrected for the 
contribution of particles created in pileup interactions and in the 
underlying event. Particles from different pileup vertices can be 
clustered into a pileup jet, or significantly overlap a jet from the 
primary vertex below the pT threshold applied in the analysis. 
Such jets are identified and removed [55].

Hadronically decaying τ leptons are reconstructed and iden-
tified using the hadron plus strips (HPS) algorithm [56] which 
targets the main decay modes by selecting PF candidates with 
one charged hadron and up to two neutral pions, or with three 
charged hadrons. A photon from a neutral-pion decay can convert 
in the tracker material into an electron and a positron, which can 
then radiate bremsstrahlung photons. These particles give rise to 
several ECAL energy deposits at the same η value and separated 
in azimuthal angle, and are reconstructed as several photons by 
the PF algorithm. To increase the acceptance for such converted 
photons, the neutral pions are identified by clustering the recon-
structed photons in narrow strips along the azimuthal direction.

4. Event selection

The event selection consists of three steps. First, a loose selec-
tion defining the basic signature is applied. The sample is then 
divided into categories, according to the number of jets in the 
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