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Quark number susceptibility on the lattice, obtained by merely adding a μN term with μ as the chemical 
potential and N as the conserved quark number, has a quadratic divergence in the cut-off a. We show 
that such a divergence already exists for free fermions with a cut-off regulator. While one can eliminate 
it in the free lattice theory by suitably modifying the action, as is popularly done, it can simply be 
subtracted off as well. Computations of higher order susceptibilities, needed for estimating the location 
of the QCD critical point, then need a lot fewer number of quark propagators at any order. We show that 
this method of divergence removal works in the interacting theory.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The phase diagram of the strongly interacting matter described 
by Quantum Chromodynamics (QCD) has been a subject of intense 
research in the recent years. Usual weak coupling perturbative 
approach may work for sufficiently high temperatures. However, 
the gauge interactions are likely to be strong enough for tem-
peratures close to �QCD , the typical scale of QCD, necessitating 
strong coupling techniques. Lattice QCD is the most successful 
non-perturbative technique which has provided us with some in-
teresting results pertaining to the phase diagram. It is now fairly 
well known from independent lattice studies that the transition 
from the hadron to the quark gluon plasma phase at zero baryon 
density is a crossover [1–3]. At non-zero density, or equivalently 
nonzero quark chemical potential μ, one has to face a sign prob-
lem: quark determinant is complex. This does not allow for an 
importance sampling based Monte Carlo study. Several ways have 
been advocated in the recent years to circumvent the sign problem 
in QCD [4–7]. From perturbative studies of model quantum field 
theories with the same symmetries as QCD [8] and chiral model 
investigations at T << μ [9], a critical end-point is expected in 
the QCD phase diagram. If present, the critical-end point would 
result in the divergence of the baryon number susceptibility. Thus 
its Taylor expansion [7] at finite baryon density as a series in μB/T
can be used to compute the radius of convergence, and there-
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fore, an estimate of the location of the critical end-point [10,11]. 
First such estimates of the radius of convergence of the Taylor se-
ries have predicted the critical end-point to be at T E/Tc = 0.94
and μB/T E = 1.8(1) [11]. Recently, a study on a finer lattice has 
suggested the continuum limit to be around T E/Tc = 0.94(1), 
μB/T E = 1.68(5) [12]. In the heavy-ion experiments, the fluctu-
ations of the net proton number could act as a proxy for the 
net baryon number. The STAR experiment at Brookhaven National 
Laboratory has reported the measurements for the fluctuations of 
the net proton number for a wide range of center of mass en-
ergy 

√
s, of the colliding heavy ions between 7.7 and 200 GeV. 

At 
√

s = 19.6 GeV the experimental data are observed [13] to de-
viate from the predictions of the proton fluctuations for models 
which do not have a critical end-point, and is similar to the lat-
tice QCD-based predictions [14] for a critical point, signaling its 
possible presence. It would be thus important to have a thorough 
understanding of the systematics of the lattice QCD results and 
make them as much reliable as possible.

In addition to the usual suspects, such as continuum extrap-
olation or effects due to the finiteness of the lattice spacing, the 
scale-setting, and the statistical precision of the measurements, a 
key new important factor is that the radius of convergence esti-
mate requires ratios of as many higher orders of quark number 
susceptibilities (QNSs) as possible. Currently the state of the art is 
the eighth order QNS [10,11]. It is very important to verify whether 
the existing results are stable if ratios of further higher order of 
QNS are taken into account. In order to calculate the QNS of or-
der m, one has to take the mth-derivative of the free energy with 
respect to the quark chemical potential. Since the popular method 
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of incorporating the chemical potential on the lattice is through 
exp(±μa) factors multiplying the forward and the backward tem-
poral gauge links respectively of the fermion operator [15,16], 
there is an ever increasing proliferation of terms of varying sign 
as m increases. Their large number as well as the large cancella-
tions amongst them at a specific order make it difficult to increase 
m beyond eight at present. Introducing the chemical potential by 
a μN-term, where N is the corresponding conserved charge, leads 
to both much fewer terms and lesser cancellations at the same m
[17], thereby reducing the computational cost up to 60% at eighth 
order; more savings ought to accrue by going to even higher or-
ders. Not only will this improve the precision of the location of the 
critical point but more precise Taylor coefficients and more terms 
in the Taylor expansion can potentially also lead to a better control 
of the QCD equation of state at finite baryon density which will be 
needed for the analysis of the heavy-ion data from the beam en-
ergy scan at RHIC as well as the future experiments at FAIR and 
NICA.

In this paper, we discuss whether such a linear in μ approach 
is viable or has unsurmountable problems by comparing with the 
usual exponential in μ method. In Section 2, we revisit the num-
ber density for non-interacting fermions in the continuum using a 
cut-off regulator. We point out that divergences appear already in 
the continuum free theory when the cut-off regulator is taken to 
infinity contrary to the common knowledge. We then discuss an 
approach to tackle this divergence in the free theory. By perform-
ing continuum extrapolation of the second and fourth order QNS 
for quenched QCD for the linear in μ method, we validate it in 
Section 3. This is the most important result of our paper. We dis-
cuss its possible consequences and the extensions to higher order 
QNS.

2. Thermodynamics of non-interacting fermions

QCD thermodynamics can be derived from its partition func-
tion, written in the path integral formalism [18] as,

Z =
∫

DAμDψ̄Dψ

× e
∫ 1/T

0 dτ
∫

d3x
[
−1/2 Tr(F2

μ,ν )−ψ̄(γμ(∂μ−igAμ)+m−μγ4)ψ
]
, (1)

where ψ , ψ̄ and Aμ represent the quark, anti-quark and the gluon 
fields respectively, whose the color indices are not written explic-
itly above. μ is the chemical potential for the net quark number 
with the corresponding conserved charge being 

∫
d3xψ̄γ4ψ . Gen-

eralizations to various conserved flavor numbers is straightforward. 
For simplicity, we will consider only a single flavor with the bary-
onic chemical potential μB = 3μq . Appropriate derivatives of Z
lead to various thermodynamical quantities, e.g., the quark num-
ber density, or equivalently (1/3) the baryon number density, is 
defined as,

n = T

V

∂ lnZ
∂μ

|T =fixed (2)

Earlier attempts to discretize the above theory to investigate the 
finite baryon density physics on a space–time lattice revealed 
μ-dependent quadratic divergences in the number density and the 
energy density when the chemical potential is introduced in the 
quark Dirac operator by multiplying it with the corresponding con-
served charge on the lattice. These divergences, which appear as a 
μ/a2 term in the expression for the lattice number density with 
a as the lattice spacing, are present even if the gauge interactions 
are absent. Through explicit calculation of the number density for 
non-interacting fermions on the lattice, it was then shown [15,16,

19] that suitable modification of the μN term in the action, elimi-
nates these divergent terms on the lattice, and yields a finite a → 0
continuum limit. Numerical studies of the QNS for the interacting 
theory subsequently confirmed that once the free theory diver-
gences are thus eliminated, no further divergences arise [20,21]. 
A succinct way to describe all the various actions is to introduce 
functions f (μa)[g(μa)] as the multiplying factors for the forward 
(backward) timelike gauge fields on the lattice. While for the naive 
discretization, f = 1 +aμ and g = 1 −aμ leads to a divergent bary-
onic susceptibility in the continuum limit, the choice f = exp(aμ)

and g = exp(−aμ) does not.
Clearly since all derivatives of f and g are nonzero for the ex-

ponential case, whereas only the first derivative is nonzero for the 
linear case, higher order QNS are a lot simpler for the latter. Fur-
thermore, for fermions with better chiral properties such as the 
Overlap fermions or the Domain Wall fermions, the exponential 
form leads to a loss [22] of the exact chiral symmetry on lattice 
for nonzero μ. Indeed the only chiral symmetry preserving form 
these fermions have for finite μ and a is the linear form [23]. 
This motivates us to revisit the issue of the nature and origin of 
these divergences when the chemical potential enters linearly in-
stead of the exponential form. As we show below, the divergences 
are present for the continuum free fermions as well, and the lattice 
regulator simply faithfully reproduces them. While one can employ 
the freedom of lattice action to eliminate them, it is not necessary. 
Indeed, one can perhaps employ simpler subtraction methods to 
eliminate them, as we demonstrate in this paper.

2.1. Continuum free fermions

Results for the continuum free fermions are easily found in 
textbooks [18]. We review them below solely with the idea of 
pointing out explicitly the μ-dependent divergences present in 
them. For simplicity, we consider only massless fermions though 
this derivation can be easily extended for finite mass. The expres-
sion for the number density for free fermions is easily obtained 
from the definitions above as

n = 4iT
∞∑

j=−∞

∫
d3 p

(2π)3

(ω j + iμ)

p2 + (ω j + iμ)2

≡ 4iT
∞∑

j=−∞
F (ω j,μ) , (3)

where p2 = p2
1 + p2

2 + p2
3 and ω j = (2 j + 1)π T . Here we choose 

the gamma matrices to be all Hermitian as is common in lattice 
studies. The continuum convention followed in the standard texts 
has only γ4 as Hermitian and the other gamma matrices are anti-
Hermitian. The expression in Eq. (3) can be evaluated by the usual 
trick of converting the sum over energy states to a contour in-
tegral. The Matsubara frequencies lie on the real ω-axis. Following 
[18] again, one can employ an infinitesimally small contour around 
the each pole on the real ω axis to represent the ω j -sum, and ob-
tain

2π T
∑

j

F (ω j,μ)

= Ltε→0

⎡
⎢⎣

∞+iε∫
−∞+iε

F (ω,μ)dω

eiω/T + 1
+

−∞−iε∫
∞−iε

F (ω,μ)dω

eiω/T + 1

⎤
⎥⎦ . (4)

The line integrals in Eq. (4) can in turn be written in terms of con-
tours in the upper and lower complex ω planes. Using the exact 
identity,
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