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Kinetic theory of Dirac fermions is studied within the matrix valued differential forms method. It is based 
on the symplectic form derived by employing the semiclassical wave packet build of the positive energy 
solutions of the Dirac equation. A satisfactory definition of the distribution matrix elements imposes 
to work in the basis where the helicity is diagonal which is also needed to attain the massless limit. 
We show that the kinematic Thomas precession correction can be studied straightforwardly within this 
approach. It contributes on an equal footing with the Berry gauge fields. In fact in equations of motion it 
eliminates the terms arising from the Berry gauge fields.
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1. Introduction

Dirac equation which describes massive spin-1/2 particles pos-
sesses either positive or negative energy solutions described by 
4-dimensional spinors. However, to furnish a well defined one par-
ticle interpretation, instead of employing both types of solutions, 
a wave packet build of only positive energy plane wave solutions 
should be preferred. A nonrelativistic semiclassical dynamics can 
be obtained employing this wave packet. Semiclassical limit may 
be useful to have a better understanding of some quantum me-
chanical phenomena. In the massless limit Dirac equation leads 
to two copies of Weyl particles which possess opposite chirality. 
Recently, the chiral semiclassical kinetic theory has been formu-
lated to embrace the anomalies due to the external electromag-
netic fields in 3 + 1 dimensions [1,2]. This remarkable result was 
extended to any even dimensional space–time by making use of 
differential forms in [3] by introducing some classical variables 
corresponding to spin. Although in [3] non-Abelian anomalies have 
been incorporated into the particle currents, the solutions of phase 
space velocities in terms of phase space variables were missing. 
In [4] a complete description of the chiral semiclassical kinetic 
theory in any even dimension was established by introducing a 
symplectic two-form which is a matrix labeled with “spin indices”, 
without introducing any classical variable corresponding to spin 
degrees of freedom. In this formalism, although the classical phase 
space variables are the ordinary ones, the velocities arising from 
the equations of motion are matrix valued. It has been shown in 
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[5] that this matrix valued symplectic two form can be derived 
within the semiclassical wave packet formalism [6,7]. In fact the 
“spin indices” label the linearly independent positive energy solu-
tions.

In the formulation of the Hamiltonian dynamics starting with 
a first order Lagrangian, the related Hamiltonian should be pro-
vided. In the development of the chiral kinetic theory the Hamil-
tonian was taken as the positive relativistic energy of the free 
Weyl Hamiltonian. However, later it was shown that the adequate 
Hamiltonian should contain all the first order terms in Planck con-
stant [8] which can be attained by employing the method intro-
duced in [9]. Independently, the same Hamiltonian was conjec-
tured in [10] to restore the Lorentz invariance of the semiclassical 
chiral theory. To obtain it one first has to derive the Hamiltonian 
of the massive spin-1/2 fermion and then take the massless limit.

Massive fermions also appear in condensed matter systems 
which were studied in terms of wave packets in [11,12]. The semi-
classical kinetic theory of Dirac particles was also discussed in 
[13], where the Berry gauge fields have been given in a different 
basis and some classical degrees of freedom have been assigned 
to spin. We would like to establish the semiclassical kinetic the-
ory of Dirac particles within the formalism given in [4]. There 
are some advantages of employing this method. First of all be-
cause of not attributing any classical variables to spin but taking 
them into account by considering quantities matrix valued in “spin 
space”, the calculations can be done explicitly. The differential 
forms method provides us the solutions of the equations of motion 
for the phase space velocities in terms of phase space variables 
straightforwardly. Thus the particle currents can be readily derived. 
Moreover, we will show that within this formalism one can study 
the relativistic correction known as Thomas precession [14].
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Thomas precession stems from the fact that a Lorentz boost can 
be written as two successive Lorentz boosts accompanied by a ro-
tation which is called Thomas rotation. This purely kinematic phe-
nomenon is essential to obtain the classical evolution of electron’s 
spin correctly, without referring to the Dirac equation. Thomas 
precession should also contribute to the equations of motion of 
phase space variables. In fact, due to Thomas precession the covari-
ant formalisms of Dirac particles yield equations of motion where 
anomalous velocity terms do not emerge [15,16]. However, as we 
will see the equations of motion derived within the wave packet 
formalism possess anomalous velocity terms arising from the Berry 
curvature. This would have been expected because of the fact 
that our nonrelativistic formalism is not aware of Thomas rotation. 
Correction due to Thomas rotation should be installed in the for-
malism. We will show that our formalism suites well to take this 
correction into account: It contributes to the one-form obtained by 
the semiclassical wave packet on an equal footing with the Berry 
gauge field. In fact, it yields the cancellation of the anomalous ve-
locity terms ignoring the higher order terms in momentum. The 
connection of Berry gauge fields and Thomas precession was first 
observed by Mathur [17].

In Section 2 the one-form corresponding to the first order La-
grangian is obtained by the wave packet composed of the posi-
tive energy plane wave solutions of the Dirac equation. Then the 
related symplectic form is constructed and the solutions of the 
equations of motion for the velocities of the Dirac particle are 
established in Section 3. Spin degrees of freedom are taken into 
account by letting the velocities be matrix valued. So that, one 
should consider a matrix valued distribution function. In contrary 
to spin, helicity operator is a conserved quantity for the free Dirac 
particle. Moreover, we would like to split the particles as right-
handed and left-handed appropriate to consider the massless limit 
and the chiral currents when there is an imbalance of chiral par-
ticles. Therefore we introduce a change of basis to the helicity 
basis as clarified in Section 4. Employing distribution matrix in 
the adequate basis we then can write the particle number den-
sity and the related current by the velocities written in terms of 
the phase space variables in Section 3. In Section 5 we obtained 
the massless limit by constructing the helicity eigenstates explic-
itly. In Section 6 a brief review of Thomas rotation is presented. 
Then, we presented how it appears in the one-form obtained by 
the semiclassical wave packet. We will see that up to higher or-
der terms in momentum it contributes as the Berry gauge field 
but with an opposite sign. Our semiclassical formalism should be 
supported by an equation governing spin dynamics. This will be 
attained employing Gosselin–Berárd–Mohrbach (GBM) method [9]
which is also needed to derive the semiclassical Hamiltonian. In 
the last section the results obtained and some possible applications 
are discussed. Moreover, we clarified in which frame we obtained 
the semiclassical theory.

2. Semiclassical wave packet

Dirac particle interacting with the external electromagnetic 
fields E, B , whose vector and scalar potentials are a(x) and a0(x), 
is described by the Dirac Hamiltonian H = H0 + ea0(x), where

H0(p − ea(x)) = βm + α · (p − ea(x)). (1)

We set the speed of light c = 1 and let e < 0 for electron. The 
representation of the αi; i = 1, 2, 3, and β matrices are chosen as

αi =
(

0 σi

σi 0

)
, β =

(
1 0
0 −1

)
,

where σi are the Pauli spin matrices.

A semiclassical formulation given in terms of the wave packet 
made of the positive energy solutions of the Dirac equation pro-
vides a well defined one particle interpretation. Let the position of 
the wave packet center in the coordinate space be xc , and the cor-
responding momentum be pc . The semiclassical wave packet is de-
fined in terms of the positive energy solutions, uα(x, p); α = 1, 2, 
as

ψx(pc, xc) =
∑
α

ξαuα(pc, xc)e−i pc ·x/h̄.

For simplicity we deal with constant ξα coefficients. We would like 
to attain the one-form η which is defined through dS as

dS ≡
∫

[dx]δ(xc − x)	
†
x (−ih̄d − H0Ddt)	x =

∑
αβ

ξ∗
αηαβξβ.

H0D is the block diagonal Hamiltonian which should be derived 
from (1). Now, calculating dS one attains the η one-form as fol-
lows.

ηαβ = −δαβxc · dpc − aαβ · dxc − Aαβ · dpc − Hαβ

0D dt. (2)

Here we introduced the matrix valued Berry gauge fields

aαβ = ih̄u†(α)(pc, xc)
∂

∂xc
u(β)(pc, xc),

Aαβ = ih̄u†(α)(pc, xc)
∂

∂ pc
u(β)(pc, xc).

Although we deal with the (3 + 1)-dimensional space–time, the 
derivation of η does not depend on dimension.

3. Semiclassical Hamiltonian dynamics

Instead of solving the Dirac equation in the presence of the 
electromagnetic vector potential a(x), we substitute p → p+ea(x), 
in (1) and consider the free particle solutions with E = √

p2 + m2. 
Then the positive energy solutions will not possess x dependence. 
Therefore by renaming (xc, pc) → (x, p) and setting aαβ = 0, we 
obtain the one-form

η = pidxi + eaidxi − Aidpi − Hdt. (3)

The repeated indices are summed over. We suppress the matrix 
indices α, β , and do not write explicitly the unit matrix I, when 
it is not necessary. We deal with the Hamiltonian H = H D(p) +
ea0(x), where

H D(p) = E − h̄e

(
m

σ · B

2E2
+ (B · p)(σ · p)

2E2(E + m)

)
. (4)

This semiclassical Hamiltonian includes all contributions which are 
at the first order in h̄. It is attained by making use of the GBM 
method [9].

To obtain Hamiltonian dynamics we have to introduce a sym-
plectic two-form. In general the constituents of the one-form (ma-
trix) η can be non-Abelian, so that we adopt the definition of the 
symplectic two-form ω̃ to be

ω̃ = dη − i

h̄
η ∧ η.

We would like to emphasize that it is a matrix in spin indices. 
Employing the one-form (3), it yields

ω̃ = dpi ∧ dxi + eEidxi ∧ dt + f idpi ∧ dt − G + eF .

Here, Ei = − 
(

∂ai
∂t + ∂a0

∂xi

)
, is the electric field and
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