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In this work, the effects of non-commutative and commutative vacua on the phase space generated 
by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, 
the commutative and non-commutative cases are compared. To take account the effects of non-
commutativity, two well known non-commutative parameters, θ and β , are introduced. It should be 
emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ
which is related to space sector. Also the different boundary conditions and mathematical interpretations 
of non-commutativity are explored.
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1. Introduction

In this work our aim is studying a non-commutative model of 
scalar torsion gravity.

Recently some astrophysical observations have shown that the 
Universe undergoing an accelerated phase era. To justify this unex-
pected result, scientists have proposed some different models such 
as, scalar field models [1–4] and modify theories of gravity [5–8]. 
For the latter proposal one can deal with teleparallel equivalent of 
general relativity [9–12], in which the field equations are second 
order [13]. In addition in this scenario the Levi-Civita connections 
replaced by Weitzenböck connection, where has no curvature but 
only torsion [14].

It is obvious that for the first time, the non-commutative 
formalism between the space–time coordinate was introduced 
by [15]. Also the geometrical concept based on this model re-
cently attracts more interesting namely non-commutative geom-
etry [16–19]. It is notable the recent investigations of string the-
ory, supersymmetry, M-theory and so on [20,21], motivated sci-
entists to study classical and quantum cosmology in such frame. 
The effects of non-commutativity in cosmology have been investi-
gated by two well-known models, i.e. minisuperspace [22,23] and 
phase space [24], while the geometrical structure of the underly-
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ing space–time unchanged [25]. In this work our means is that to 
build up a non-commutative scenario by means of a deformation 
achieved by Moyal product [26], for a scalar torsion gravity [27] in 
both classical and quantum levels. Although the non-minimal cou-
pling term has a richer structure and experiencing the phantom-
divide crossing and so on [9,28,29], but we want to consider the 
simplest form, minimal quintessence-like, of a scalar torsion sce-
nario in comparison to standard quintessence scenario for this in-
vestigation.

The organization of this work is asfollows. In Section 2, a brief 
review about scalar f (T ) gravity cosmology and general properties 
of the model are discussed. In Section 3, the results of our investi-
gations for scalar torsion gravity are discussed in classical level for 
both commutative and non-commutative frames. The Section 4, is 
devoted to the same details of Section 3 but in quantum level. And 
at last the Section 5, is concerned with the conclusion and discus-
sion.

2. General framework

The teleparallel theory of gravity is defined in the Weitzen-
böck’s space–time by the following line element

dS2 = N2dt2 − a2(t)δi jdxidx j , (1)

where N is the lapse function. Also it is considerable that, theory 
can be described in the tangent space, which allows us to rewrite 
the line element (1) as
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dS2 = gμνdxμdxν = ηi jθ
iθ j , (2)

dxμ = ei
μθ i , θ i = ei

μdxμ , (3)

where ηi j = diag[1, −1, −1, −1] and ei
μei

ν = δ
μ
ν or ei

μe j
μ = δ

j
i , 

and the matrix ea
μ are called tetrads that indicate the dynamic 

fields of the theory.
According to theses fields, the Weitzenböck’s connection is de-

fined as

�α
μν = ei

α∂νei
μ = −ei

μ∂νei
α , (4)

that to be used for construction the main geometrical objects of 
the space–time. The components of the tensor torsion and the con-
torsion are defined respectively as

T ρ
μν ≡ el

ρ
(
∂μel

ν − ∂νel
μ

)
, (5)

K μν
ρ ≡ −1

2

(
T μν

ρ − T νμ
ρ − Tρ

μν
)

. (6)

It was defined a new tensor Sρ
μν , to obtain the scalar equivalent 

to the curvature scalar of general relativity, i.e. Ricci scalar, that is 
as

Sρ
μν ≡ 1

2

(
K μν

ρ + δ
μ
ρ T αν

α − δν
ρ T αμ

α

)
. (7)

Hence, the torsion scalar is defined by the following contraction

T ≡ Sρ
μν T ρ

μν. (8)

In studying the scalar torsion model instead of non-minimal cou-
pling scenario [9,29], the minimal coupling action of the theory is 
defined by generalizing the teleparallel theory, as [27]

A =
∫

d4x|e|
[
ξ T − ζ

1

2
ηi jei

μe j
ν∇μφ∇νφ − V (φ)

]
, (9)

where |e| = √−g and T is the torsion scalar, ξ and ζ are constant. 
Let us choose the following set of diagonal tetrads related to the 
metric (1) as[
ea

μ

] = diag [N,a,a,a] , (10)

the determinant of the matrix (10) is e = Na3. The components of 
the torsion tensor (5) for the tetrads (10) are given by

T 1
01 = ȧ

Na
= T 2

02 = T 3
03 , (11)

and the components of the corresponding contorsion are

K 01
1 = ȧ

Na
= K 02

2 = K 03
3 . (12)

The components of the tensor Sα
μν , in (7), are given by

S1
10 = (

ȧ

Na
) = S2

20 = S3
30 . (13)

By using the components (11) and (13), the torsion scalar (8) is 
given by

T = −6
ȧ2

(Na)2
.

Substituting Eq. (10) into the action (9) the Lagrangian density can 
be achieved as follows

L = Na3
(
−6ξ

ȧ2

(Na)2
+ ζ

2N2
φ̇2 − V (φ)

)
. (14)

For more convenience the above constants ξ and ζ can be consid-
ered as ξ = 1/6, ζ = 1/2. Using a new set of variables,

x = a2

2
cosh φ, y = a2

2
sinh φ , (15)

where a2 = 2(x − y)eφ , one can rewrite the above Lagrangian den-
sity as follows

L = ( ẏ2 − ẋ2) − 4(x − y)eφ V (φ) . (16)

Thence, the corresponding Hamiltonian density is

H ≡
∑
α

ẋα ∂L
∂ ẋα

−L = 1

2
(

1

2
P 2

y − 1

2
P 2

x ) + 4(x − y)eφ V (φ) , (17)

where V (φ) = 2V 0 exp [−φ] and V 0 is a constant.

3. The cosmological evolution in classical regime

It is clear the classical solutions of a specific Hamiltonian can 
be easily yielded. However we want to inspect the effects of non-
commutativity in classical level, then compare our results with 
commutative case.

3.1. Commutative algebra

It is well known the Poisson brackets between components of 
the classical phase space variables are as{

xi, x j
} = {

pi, p j
} = 0,

{
xi, p j

} = δi j, (18)

where xi(i = 1, 2) = x, y and pi(i = 1, 2) = px, p y . Assuming N =
1/a, the equations of motion to be as

ẋ = {x,H} = − px

2
, ṗx = {px,H} = −8V 0 , (19)

ẏ = {y,H} = p y

2
, ṗ y = {

p y,H
} = 8V 0 . (20)

Integrating the above equations, get

x(t) = 4V 0t2 − p0xt + x0, px(t) = −8V 0t + p0x (21)

y(t) = 4V 0t2 + p0yt + y0, p y(t) = 8V 0t + p0y , (22)

wherex0, y0, p0x and p0y are integration constants. In addition 
the constraint equation between them, by using the zero energy 
condition, H ≡ 0, yields

p2
0x − p2

0y = −16V 0(y0 − x0) . (23)

It is clear the Eqs. (21) and (22) have the same form of the equa-
tion motion of a particle with a constant acceleration. one can 
apply the condition x > 0, with the bound p2

0x − 16V 0x0 < 0 to 
obtain the constraint p2

0y − 16V 0 y0 < 0 from relation (23), which 
indicates that y > 0. So only half of minisuperspace x > y > 0 is 
covered by dynamical variables. The evolution of scale factor and 
scalar field by combination Eqs. (15), (21) and (22) are given as 
follows

a(t) =
(

8|p0x|(8V 0t3 + 2x0t)
)1/4

, (24)

φ(t) = 1

2
ln

(
8V 0t2 + 2x0

2|p0x|t
)

, (25)

where we suppose x0 = y0 and p0x = p0y , in agreement with 
Eq. (23). Based on Eq. (24), ä < 0 so the Universe is in a decel-
erated phase epoch. According to the Eq. (15), one can define an 
effective scale factor, a2

eff = a2e−φ , which is equal to

a2
eff = 2(x − y) = 4|p0x|t . (26)
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