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Understanding the observed arrow of time is equivalent, under general assumptions, to explaining why 
Boltzmann brains do not overwhelm ordinary observers. It is usually thought that this provides a 
condition on the decay rate of every cosmologically accessible de Sitter vacuum, and that this condition 
is determined by the production rate of Boltzmann brains calculated using semiclassical theory built on 
each such vacuum. We argue, based on a recently developed picture of microscopic quantum gravitational 
degrees of freedom, that this thinking needs to be modified. In particular, depending on the structure of 
the fundamental theory, the decay rate of a de Sitter vacuum may not have to satisfy any condition 
except for the one imposed by the Poincaré recurrence. The framework discussed here also addresses the 
question of whether a Minkowski vacuum may produce Boltzmann brains.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

At first sight, the fact that we observe that time flows only 
in one direction may seem mysterious, given that the fundamen-
tal laws of physics are invariant under reversing the orientation 
of time.1 Upon careful consideration, however, one notices that 
the problem is not the unidirectional nature per se. As discussed 
in Refs. [1,2], given any final state | f 〉 whose coarse-grained en-
tropy is lower than the initial state |i〉, the evolution history is 
overwhelmingly dominated by the CPT conjugate of the standard 
(entropy increasing) process | f̄ 〉 → |ı̄〉. This implies that a physi-
cal observer, who is necessarily a part of the whole system, sees 
virtually always, i.e. with an overwhelmingly high probability, that 
time flows from the “past” (in which correlations of the observer 
with the rest of the system are smaller) to the “future” (in which 
the correlations are larger).

The problem of the arrow of time, therefore, is not to under-
stand its unidirectional nature, but to explain why physical predic-
tions are (probabilistically) dominated by what we observe in our 
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1 The operation discussed here is not what is called the time reversal T in quan-

tum field theory, which we know is broken in nature. It corresponds to CPT in the 
standard language of quantum field theory.

universe, i.e. a flow from a very low coarse-grained entropy state 
to a slightly higher entropy state. In particular, it requires the un-
derstanding of the following facts:

• At least one set of states representing our observations, which 
are mutually related by time evolution spanning the obser-
vation time, are realized in the quantum state representing 
the whole universe/multiverse. (Here and below we adopt the 
Schrödinger picture.) This is the case despite the fact that 
these states have very low coarse-grained entropies.2

• The answer to a physical question, which may always be asked 
in the form of a conditional probability [6], must be deter-
mined by the class of low coarse-grained entropy states de-
scribed above. In particular, the probability should not (always) 
be dominated by the states in which the unconditioned part of 
the system has the highest coarse-grained entropies.

2 Because of the Hamiltonian constraint, the full universe/multiverse state is ex-
pected to be static, i.e. not to depend on any time parameter [3,4]. We may, how-
ever, talk about effective time evolution if we focus on branches of the whole 
universe/multiverse state, since they are not (necessarily) invariant under the ac-
tion of the time evolution operator e−iHτ . This is the picture we adopt in this 
paper. Note that this time evolution still does not have to be the same as “phys-
ical time evolution” defined through correlations among physical subsystems, e.g., 
as in Ref. [5]. In the static-state picture, the statement here is phrased such that the 
state of the universe/multiverse contains components representing our observations 
despite the fact that they are not generic in the relevant Hilbert space.
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These elements comprise (essentially) the well-known Boltzmann 
brain problem [7,8]. The problem of the arrow of time is thus 
equivalent to the Boltzmann brain problem [4] under (rather gen-
eral) assumptions that went into the line of argument given above.

Any realistic cosmology must accommodate the two facts listed 
above. Is it trivial to do so? In a seminal paper [7], Dyson, Kle-
ban, and Susskind pointed out that it is not. In particular, they 
considered a de Sitter vacuum representing our own universe and 
argued that if it lives long enough, thermal fluctuations in de Sit-
ter space lead to Boltzmann brains observing chaotic worlds, who 
overwhelm ordinary, ordered observers like us. If true, this would 
give an upper bound on the lifetime of our universe which is much 
stronger than that needed to avoid the Poincaré recurrence (bar-
ring the possibility that the observed vacuum energy relaxes into 
a zero or negative value in the future). In this paper we argue 
that this consideration needs to be modified, based on the picture 
of the microscopic structure of quantum gravity advanced recently 
[9] to address the black hole information problem [10,11]. We dis-
cuss implications of this modification for our own universe and the 
eternally inflating multiverse. We also discuss implications of the 
framework for the possibility [12] of Boltzmann brain production 
in a Minkowski vacuum.

2. de Sitter space in quantum gravity

We first extend the discussion of Ref. [9], which mainly focused 
on a system with a black hole, to de Sitter space. In cosmology, 
de Sitter space appears as a meta-stable state in the middle of the 
evolution of the universe/multiverse, and in this sense it is simi-
lar to a spacetime with a dynamically formed black hole. Indeed, 
string theory suggests that there is no absolutely stable de Sit-
ter vacuum in full quantum gravity; it must decay, at least, before 
the Poincaré recurrence time [13]. This implies that what we call 
de Sitter space cannot be an eigenstate of energy (at least in this 
context).

Consider a semiclassical de Sitter space with Hubble radius α. 
(We focus on 4-dimensional spacetime for simplicity, but the ex-
tension to other dimensions is straightforward.) Following the 
complementarity hypothesis [14], and in particular its implemen-
tation in Refs. [2,6], we adopt a “local description,” in which 
quantum states represent physical configurations on equal-time 
hypersurfaces foliating the causal patch associated with a freely 
falling frame. We assume that the timescale for the evolution of 
microstates representing the de Sitter space is of order Δt ≈ α, 
where t is the proper time measured at the spatial origin, p0, of 
the reference frame. The uncertainty principle then implies that a 
state representing this space must involve a superposition of en-
ergy eigenstates with a spread of order ΔE ≈ 1/α. Associating this 
energy with the vacuum energy density ρ� integrated over the 
Hubble volume, E ≈ O (ρ�α3) ≈ O (α/l2P), this spread is translated 
into Δα ≈ O (l2P/α), where lP is the Planck length.

How many different independent ways are there to superpose 
the energy eigenstates to arrive at the semiclassical de Sitter space 
described above? As in the black hole case, we assume that the 
Gibbons–Hawking entropy [15]

SGH = A
4l2P

= πα2

l2P
, (1)

gives the logarithm of this number (at the leading order in ex-
pansion in inverse powers of A/l2P), where A = 4πα2 is the area 
of the de Sitter horizon [16]. In particular, there are exponen-
tially many independent de Sitter vacuum states—the states that 
do not have a field or string theoretic excitation in the semiclassi-
cal background—which all represent the same de Sitter vacuum at 
the semiclassical level.

The analysis of physics in this de Sitter vacuum is parallel to 
that on a black hole background in Ref. [9]. Denoting the index 
representing the exponentially many de Sitter vacuum states by

k = 1, . . . , eS0 , (2)

where |S0 − SGH| ≈ O (Aq/l2q
P ; q < 1), states at late times on this 

vacuum can be expanded in terms of the microstates of the form

|�āa;k(α)〉. (3)

Here, ā and a label excitations of the stretched horizon, located at 
r = α − O (l2P/α) ≡ rs, and the interior region, r < rs, respectively, 
where r is the static radial coordinate with r = 0 taken at p0. Note 
that excitations here are defined as fluctuations with respect to 
a fixed background, so their energies as well as entropies can be 
either positive or negative, although their signs must be the same. 
The contribution of the excitations to the entropy is subdominant 
in the l2P/A expansion, so that the total entropy of this de Sitter 
system (not necessarily of the vacuum states) is still given by S =
A/4l2P at the leading order.

The indices for the excitations, ā and a, and the vacuum, k, do 
not fully “decouple”. In particular, operators in the semiclassical 
theory representing modes whose energies defined at r = 0 are

ω � TGH, (4)

act nontrivially on both a and k indices, where TGH = 1/2πα is the 
Gibbons–Hawking temperature. This allows us to understand the 
thermal nature of the semiclassical de Sitter space in the following 
manner. The fact that all the independent microstates with differ-
ent k lead to the same geometry (within the quantum mechanical 
uncertainty) suggests that the semiclassical picture is obtained af-
ter coarse-graining the degrees of freedom represented by this 
index, which we call the vacuum degrees of freedom. In this picture, 
the de Sitter vacuum in the semiclassical description is represented 
by the density matrix

ρ0(α) = 1

eS0

eS0∑
k=1

|�ā=a=0;k(α)〉〈�ā=a=0;k(α)|. (5)

To obtain the response of this state to the operators in the semi-
classical theory, we may trace out the subsystem C̄ on which they 
do not act. Consistently with our identification of the origin of the 
Gibbons–Hawking entropy, we identify the resulting reduced den-
sity matrix as the thermal density matrix

ρ̃0(α) = TrC̄ ρ0(α) ≈ 1

Z
e
− Hsc(α)

TGH , (6)

where Z = Tr e−Hsc(α)/TGH , and Hsc(α) is the Hamiltonian of the 
semiclassical theory.

Another manifestation of the non-decoupling nature of the a
and k indices is that for states having a negative energy excitation, 
the range over which k runs is smaller than that in Eq. (2)—this 
is the meaning that a negative energy excitation carries a negative 
entropy. As discussed in the next section, this fact is important 
in ensuring unitarity in the process in which a physical detector 
held at constant r is excited due to interactions with the de Sitter 
spacetime.

3. Vacuum degrees of freedom

The expression in Eq. (6) implies that the spatial distribution of 
the information in k follows the thermal entropy calculated using 
the local temperature



Download English Version:

https://daneshyari.com/en/article/1851604

Download Persian Version:

https://daneshyari.com/article/1851604

Daneshyari.com

https://daneshyari.com/en/article/1851604
https://daneshyari.com/article/1851604
https://daneshyari.com

