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We derive the dynamics of the gravitational collapse of a homogeneous and spherically symmetric
cloud in a classical set-up endowed with a topological sector of gravity and a non-minimal coupling
to fermions. The effective theory consists of the Einstein–Hilbert action plus Dirac fermions interacting
through a four-fermion vertex. At the classical level, we obtain the same picture that has been recently
studied by some of us within a wide range of effective theories inspired by a super-renormalizable and
asymptotically free theory of gravity. The classical singularity is replaced by a bounce, beyond which the
cloud re-expands indefinitely. We thus show that, even at a classical level, if we allow for a non-minimal
coupling of gravity to fermions, event horizons may never form for a suitable choice of some parameters
of the theory.
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In the previous work, some of us have studied the gravitational
collapse in a wide class of asymptotically free theories of grav-
ity [1]. There was found a picture that substantially differs from
the standard scenario. The central singularity that appears in clas-
sical general relativity is replaced by a bounce, after which the
collapsing body starts expanding. It was argued that, strictly speak-
ing, black holes never form, in the sense that there are no regions
causally disconnected to future null infinity. The collapse can only
produce a temporary trapped surface, which looks like an event
horizon for an observational timescale much shorter than the one
of the collapse. While this time interval is of order a dynamical
timescale for a comoving observer, it is definitively long for an
observer in the exterior metric that is far away from the collaps-
ing body. For all practical purposes these objects are therefore like
black holes. Similar studies have been presented in Ref. [2]. In the
present work, we show that the same picture can be found in clas-
sical general relativity, when we extend the gravitational sector to
include topological terms and we consider an experimentally al-
lowed non-minimal coupling of fermions in the Dirac action.

We can start from the non-minimal Einstein–Cartan–Holst
(ECH) action, as cast by Bojowald and Das in [3]

S[e, A,ψ] = SG [e, A] + S F [e, A,ψ]

= 1

2κ

∫
d4x |e|eμ

I eν
J P I J

K L Fμν
K L(A)
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+ i

2

∫
d4x|e|

[
ψγ I eμ

I

(
1 − i

α
γ5

)
∇μψ

+ imψψ + h.c.

]
, (1)

where κ = 8πGN is the reduced Planck length square. Notice the
presence of a non-minimal coupling parameter α ∈ R, which has
been first introduced by Freidel, Minic and Takeuchi in [4], but
without γ5. This γ5 turns out to be crucial for parity invariance
and was introduced by Mercury in [5]. The experimental bounds
for α and γ arising from lepton-quark contact interactions are dis-
cussed in [4]. The operator

P I J
K L = δ

[I
K δ

J ]
L − 1

2γ
ε I J

K L, (2)

where εI J K L is the Levi-Civita symbol, is defined in terms of the
Barbero–Immirzi parameter γ , and can be inverted for γ 2 �= −1.
As shown in [5], the Einstein–Cartan action is recovered for α = γ ,
with a term that reduces to the Nieh–Yan invariant when the sec-
ond Cartan structure equation holds. This case is referred to as
minimal coupling in the Einstein–Cartan theory. From the point
of view of the Holst action, minimal coupling is met in the limit
α → ±∞.

The covariant derivative ∇μ of Dirac spinors and the field-
strength of the Lorentz connection are defined by

∇μ ≡ ∂μ + 1

4
AI J

μ γ[Iγ J ], [∇μ,∇ν ] = 1

4
F I J
μνγ[Iγ J ]. (3)

Because of the presence of fermions, a torsional part of the con-
nection enters the non-minimal ECH action. Nevertheless, we can

http://dx.doi.org/10.1016/j.physletb.2014.05.013
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2014.05.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.physletb.2014.05.013
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.05.013&domain=pdf


28 C. Bambi et al. / Physics Letters B 734 (2014) 27–30

follow here the procedure used by Perez and Rovelli in [6], and
integrate out of the theory the torsional part of the connection
through the Cartan equation, which is found by varying the total
action with respect to the connection AI J

μ . The variation of the ac-
tion with respect to the connection A gives

P I J
K L∇μ

(
eeμ

I eν
J

) = κe JνK L . (4)

This equation can then be solved for the connection. For this pur-
pose, we write the connection in the form

AI J
μ = ω(e)I J

μ + C I J
μ , (5)

where C I J
μ is the contorsion tensor and ω(e) is the torsion

free spin connection determined by e, namely the solution of
∇̃[μeI

ν] = 0. Note that we have introduced a new definition for the

covariant derivative compatible with the tetrad eI
μ ,

∇̃μ ≡ ∂μ + 1

4
ω

I J
μ γ[Iγ J ]. (6)

Replacing the definition (5) in (4) we find

Cμ
μ[I e

ν
J ] + Cν[I J ] = κ

(
P−1)K L

I J e JνK L, (7)

in which

JνK L = e
1

4
eν

I ε
I

K LMψγ5γ
Mψ − 1

2α
eν IηI[K ψγ5γL]ψ. (8)

Note that we transform internal and spacetime indices into one
another, using the tetrad field, and preserving the horizontal order
of the indices. Then the Cartan equation expresses the contortion
tensor C I J

μ in terms of the fermionic fields and tetrads

eμ
I Cμ J K = κ

4

γ

γ 2 + 1

(
βεI J K L J L − 2θηI[ J J K ]

)
, (9)

having introduced the flat metric ηI J , the fermionic axial cur-
rent J L = ψγ Lγ5ψ , and the coefficients, functions of the free pa-
rameters within the non-minimal ECH theory, β = γ + 1/α and
θ = 1 − γ /α. Thanks to (9) the non-minimal ECH action recasts
in terms of the metric compatible connection, as a sum of the
Einstein–Hilbert action and the Dirac action. The latter is now
written in terms of metric compatible variables, and is further pro-
vided with novel interaction terms, which capture the new physics
within the non-minimal ECH theory. Consequences of this new
interaction term in cosmology have been investigated by Alexan-
der, Biswas and Calcagni in [7]. The theory can be rewritten
as

S[e, A,ψ] = SG [e,ω] + S F [e,ω,ψ] + S int[e,ψ]
= 1

2κ

∫
d4x|e|eμ

I eν
J F I J

μν(ω)

+ i

2

∫
d4x |e|(ψγ I eμ

I ∇μψ −∇μψγ I eμ
I ψ + imψψ

)
− κξ

∫
d4x |e|(ψ̄γ5γ

Lψ
)
(ψ̄γ5γLψ), (10)

where

ξ = 3

16

γ 2

γ 2 + 1

(
1 + 2

αγ
− 1

α2

)
. (11)

Einstein equations Gμν = κTμν provide the dynamics for the
gravitational field eI

μ , and must be coupled to the equations of

motion for fermionic matter and radiation. We have denoted with
Gμν the Einstein tensor and the stress-energy tensor is

Tμν = eμI

|e|
δ(|e|Lmatt)

δeν
I

. (12)

The fermionic Lagrangian including the interaction reads

Lfer = |e|
[

1

2

(
ψγ I eμ

I i∇̃μψ − mψψ
) + h.c. − κξ J L J L

]
,

which yields the energy–momentum tensor

T fer
μν = 1

4

(
ψγI e

I
μi∇̃νψ + ψγI e

I
ν i∇̃μψ

) + h.c. − gμνLfer. (13)

The Dirac equations on curved background for the interacting sys-
tem are the following,

γ I eμ
I i∇̃μψ − mψ = 2ξκ

(
ψψ + ψγ5ψγ5 + ψγIψγ I)ψ, (14)

in which we have used the Fierz-decomposition(
ψγ5γ

Iψ
)
(ψγ5γIψ) = (ψψ)2 + (ψγ5ψ)2 + (

ψγ Iψ
)
(ψγIψ).

(15)

In what follows, we study the dynamics of the collapse of
a homogeneous and spherically symmetric body. In the comov-
ing gauge, the tetrad eI

μ for the Friedmann–Lemaître–Robertson–
Walker (FLRW) type metrics is

eI
0 = δ I

0 and eI
j = a(t)δ I

j, (16)

where a is the FLRW scale factor and t is the comoving time.
Solutions of the Dirac equations on curved backgrounds that are
suitable to develop cosmological analyses have been studied by
Armendariz-Picon and Greene [8]. They resorted to a form of the
spinor which allows for the vanishing of the spatial components of
the vector (but not of the axial) fermionic current

ψ = (
ψ0(t),0,0,0

)
. (17)

This ensures homogeneity and isotropy on spatial hyper-surfaces
for theories in which a cooling between vector current and any
other observable vector quantity is present. We then simplify the
Dirac equation using their ansatz, which still holds in our frame-
work due to the appearance of only quadratic powers of J L . Within
the comoving gauge, the only non-vanishing spin connection com-
ponents for ω I J

K = ω
I J
μ eμ

K are ω0i j = −ωi0 j = −Hδi j . This implies
∇̃0 = ∂0 and ∇̃i = ∂i + aH/2δi jdiag(σ j,−σ j). The Dirac equation
then reads

ψ̇0 + 3

2
Hψ0 + i

(
m + 4κξψ∗

0 ψ0
)
ψ0 = 0, (18)

where ∗ denotes complex conjugation. The equation of motion for
the bilinear ψ∗

0 ψ0 is

d

dt
ψ∗

0 ψ0 + 3Hψ∗
0 ψ0 = 0, (19)

and yields the familiar a−3 scaling for the particle number density

ψ∗
0 ψ0 = n0/a3, (20)

where n0 is a constant. With the use of Eq. (20), the first Fried-
mann equation reads

H2 = κm

3

n0

a3
+ κ2ξ

3

n2
0

a6
. (21)
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