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By using a Markov Chain Monte Carlo simulation, we investigate cosmological constraints on the ghost
dark energy (GDE) model in the framework of the Brans–Dicke (BD) theory. A combination of the latest
observational data of the cosmic microwave background radiation data from seven-year WMAP, the
baryon acoustic oscillation data form the SDSS, the supernovae type Ia data from the Union2 and the
X-ray gas mass fraction data from the Chandra X-ray observations of the largest relaxed galaxy clusters
are used to perform constraints on GDE in the BD cosmology. In this paper, we consider both flat and
non-flat universes together with interaction between dark matter and dark energy. The main cosmological
parameters are obtained as: Ωbh2 = 0.0223+0.0016

−0.0013, Ωch2 = 0.1149+0.0088
−0.0104 and Ωk = 0.0005+0.0025

−0.0073. In
addition, the Brans–Dicke parameter ω is estimated as 1/ω � 0.002.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Accelerating expansion of the Universe [1,2] can be explained
either by a missing energy component usually called “dark en-
ergy” (DE) with an exotic equation of state, or by modifying the
underlying theory of gravity on large scales. The famous examples
of the former approach include scalar field models of DE such as
quintessence [3,4], K-essence [5,6], tachyon [7,8], phantom [9–11],
ghost condensate [12,13], quintom [14–16], holographic DE [17],
agegraphic DE [18,19] and so forth. For a comprehensive review
on DE models, see [20,21]. The latter approach for explanation of
the acceleration expansion is based on the modification of the un-
derlying theory of gravity on large scales such as f (R) gravity [22]
and braneworld scenarios [23–26].

Among various models of DE, the so called ghost dark energy
(GDE) has attracted a lot of interest in recent years. The origin
of DE in this model comes from Veneziano ghosts in QCD theory
[27–30]. Indeed, the contribution of the ghosts field to the vacuum
energy in curved space or time-dependent background can be re-
garded as a possible candidate for DE [31,32]. The magnitude of
this vacuum energy is of order Λ3

QCD H , where H is the Hubble pa-
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rameter and ΛQCD is the QCD mass scale. With ΛQCD ∼ 100 MeV
and H ∼ 10−33 eV, Λ3

QCD H gives the right order of magnitude

∼(3 × 10−3 eV)4 for the observed dark energy density [31]. The
advantages of GDE model compared to other DE models is that
it is totally embedded in standard model and general relativity,
therefore one needs not to introduce any new parameter, new de-
gree of freedom or to modify gravity. The dynamical behavior of
GDE model in flat universe have been studied [33]. The study was
also generalized to the universe with spacial curvature [34]. The
instability of the GDE model against perturbations was studied in
[35]. In [36,37] the correspondence between GDE and scalar field
models of DE was established. In the presence of bulk viscosity
and varying gravitational constant, the GDE model was investigated
in [38]. Other features of the GDE model have been investigated
in Refs. [39–43]. The cosmological constraints on this model have
been considered by some authors [33,43,44].

Recently, scalar tensor theories have been reconsidered exten-
sively. One important example of the scalar tensor theories is the
BD theory of gravity which was introduced by Brans and Dicke in
1961 to incorporate Mach’s principle in Einstein’s theory of gravity
[45]. This theory also passes the observational tests in the so-
lar system domain [46]. In addition, BD theory can be tested by
the cosmological observations such as the cosmic microwave back-
ground (CMB) and large scale structure (LSS) [47–51]. Since the
GDE model has a dynamic behavior, it is more reasonable to con-
sider this model in a dynamical framework such as BD theory.

http://dx.doi.org/10.1016/j.physletb.2014.05.023
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2014.05.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:hamzeh.alavirad@partner.kit.edu
mailto:asheykhi@shirazu.ac.ir
http://dx.doi.org/10.1016/j.physletb.2014.05.023
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.05.023&domain=pdf


H. Alavirad, A. Sheykhi / Physics Letters B 734 (2014) 148–156 149

It was shown that some features of GDE in BD cosmology differ
from Einstein’s gravity [52]. For example, while the original DE
is instable in all range of the parameter spaces in standard cos-
mology [35], it leads to a stable phase in BD theory [53]. In the
framework of BD cosmology, the ghost model of DE has been stud-
ied [52]. It is also of great interest to see whether the GDE model
in the framework of the BD theory is compatible with observa-
tional data or not.

In this paper, cosmological constraints on GDE in the BD the-
ory (GDEBD) [52] theory is performed by using the Marko Chain
Monte Carlo (MCMC) simulation. The used observational datasets
are as follows: cosmic microwave background radiation (CMB)
from WMAP7 [54], 557 Union2 dataset of type Ia supernova [55],
baryon acoustic oscillation (BAO) from SDSS DR7 [56], and the
cluster X-ray gas mass fraction from the Chandra X-ray observa-
tions [57]. To put the constraints, the modified CosmoMC [58] code
is used.

The organization of this paper is as follows. In Section 2, we
review the formalism of the GDE in the framework of Brans–Dicke
cosmology. In Section 3 the methods which are used in this paper
to analyze the data are introduced. Section 4 contains the results
of the MCMC simulation and we conclude our paper in Section 5.

2. Interacting ghost dark energy in the Brans–Dicke theory in
a non-flat universe

Let us first review the formalism of the interacting GDE in the
framework of BD theory in a non-flat universe [52]. The action of
the BD theory in the canonical form may be written [59]

S =
∫

d4x
√

g

(
− 1

8ω
φ2 R + 1

2
gμν∂μφ∂νφ + LM

)
, (1)

where R is the Ricci scalar and φ is the BD scalar field. Varying
the action with respect to the metric gμν and the BD scalar field
φ, yields

φGμν = −8π T M
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φ

(
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�φ = 8π
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λ , (3)

where T M
μν stands for the energy-momentum tensor of the mat-

ter fields. The line element of the Friedmann–Robertson–Walker
(FRW) universe is

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2dΩ2

)
, (4)

where a(t) is the scale factor, and k is the curvature parameter
with k = −1,0,1 corresponding to open, flat, and closed universes,
respectively. Nowadays, there are some evidences in favor of closed
universe with a small positive curvature (Ωk � 0.01) [61]. Using
metric (4), the field Eqs. (2) and (3) reduce to
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2ω
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ä
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)
φ = 0, (7)

where H = ȧ/a is the Hubble parameter, ρD and pD are, respec-
tively, the energy density and pressure of DE, and ρm is the pres-
sureless matter density which contains both dark matter (DM) and
baryonic matter (BM) densities i.e. ρm = ρc + ρb where ρc and ρb
are the energy densities of dark matter and baryonic matter re-
spectively.

To be more general and because of some observational evi-
dences [62,63], here we propose the case where there is an in-
teraction between GDE and DM. In this case the semi-conservation
equations read

ρ̇D + 3HρD(1 + wD) = −Q , (8)

ρ̇c + 3Hρc = Q , (9)

ρ̇b + 3Hρb = 0, (10)

where Q represents the interaction term between dark matter and
dark energy and here we assume that the baryonic matter is con-
served separately. We assume Q = 3ξ H(ρm + ρD) with ξ being a
constant. Such a choice for interacting term implies the DE and
DM component do not conserve separately while the total density
is still conserved through

ρ̇ + 3H(ρ + P ) = 0, (11)

where ρ = ρD + ρm and P = PD.
The ghost energy density is proportional to the Hubble param-

eter [31]

ρD = αH, (12)

where α > 0 is roughly of order Λ3
QCD and ΛQCD are QCD mass

scale. Taking into account the fact that ΛQCD ∼ 100 MeV and
H ∼ 10−33 eV for the present time, this gives the right order of
magnitude ρD ∼ (3 × 10−3 eV)4 for the ghost energy density [31].

Since the system of Eqs. (5)–(7) is not closed, we still have an-
other degree of freedom in analyzing the set of equations. As usual
we assume the BD scalar field φ has a power law relation versus
the scale factor,

φ = φ0a(t)ε. (13)

An interesting case is when ε is small whereas ω is high so that
the product εω results of order unity [64,65]. In Section 4 we
will consider the ωε = 1 condition for constraining the model by
observational data. This is interesting because local astronomical
experiments set a very high lower bound on ω [66]; in particular,
the Cassini experiment implies that ω > 104 [46,48]. Now we take
the time derivative of relation (13). We arrive at

φ̇

φ
= ε

ȧ

a
= εH . (14)

Combining Eqs. (13) and (14) with the first Friedmann equation
(5), we get

H2
(

1 − 2ω

3
ε2 + 2ε

)
+ k

a2
= 4ω

3φ2
(ρD + ρm). (15)

As usual the fractional energy densities are defined as

Ωc = ρc

ρcr
= 4ωρc

3φ2 H2
, (16)

Ωb = ρb

ρcr
= 4ωρb

3φ2 H2
, (17)

Ωk = ρk

ρcr
= k

H2a2
, (18)

ΩD = ρD

ρcr
= 4ωρD

3φ2 H2
, (19)
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