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We compute expectation values of spatial Wilson loops in the forward light cone of high-energy colli-
sions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective
action as well as solutions of high-energy renormalization group evolution with fixed and running cou-
pling. The initial fields correspond to a color field condensate exhibiting domain-like structure over
distance scales of order the saturation scale. At later times universal scaling emerges at large distances
for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop
to the two-point correlator of magnetic fields.
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1. Introduction

Heavy ion collisions at high energies involve non-linear dynam-
ics of strong QCD color fields [1]. These soft fields correspond to
gluons with light-cone momentum fractions x � 1, which can be
described in the “Color Glass Condensate” (CGC) framework. Be-
cause of the high gluon occupation number the gluon field can be
determined from the classical Yang–Mills equations with a static
current on the light cone [2]. It consists of gluons with a transverse
momentum on the order of the density of valence charges per unit
transverse area, Q 2

s [3]. Parametrically, the saturation momentum
scale Q s separates the regime of non-linear color field interactions
from the perturbative (linear) regime. It is commonly defined using
a two-point function of electric Wilson lines, the “dipole scattering
amplitude” evaluated in the field of a single hadron or nucleus [4]
as described below.

Before the collision the individual fields of projectile and target
are two dimensional pure gauges; in light cone gauge,

αi
m = i

g
Vm∂ i V †

m (1)

where m = 1,2 labels the projectile and target, respectively. Here
Vm are light-like SU(Nc) Wilson lines, which correspond to the
eikonal phase of a high energy projectile passing through the clas-
sical field shockwave [5,6].
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The field in the forward light cone after the collision up to
the formation of a thermalized plasma is commonly called the
“glasma” [7]. Immediately after the collision longitudinal chromo-
electric and magnetic fields Ez, Bz ∼ 1/g dominate [7,8]. They fluc-
tuate according to the random local color charge densities of the
valence sources. The magnitude of the color charge fluctuations is
related to the saturation scale Q 2

s . The transverse gauge potential
at proper time τ ≡ √

t2 − z2 → 0, is given by [9]

Ai = αi
1 + αi

2. (2)

Note that while the fields of the individual projectiles αi
m are pure

gauges, for a non-Abelian gauge theory Ai is not. Hence, spatial
Wilson loops evaluated in the field Ai are not equal to 1. The
field at later times is then obtained from the classical Yang–Mills
equations of motion, which can be solved either analytically in
an expansion in the field strength [9,10] or numerically on a lat-
tice [11–13]. The Wilson loop, and the magnetic field correlator,
provide an explicitly gauge-invariant method to study the nonper-
turbative dynamics of these fields, complementary to studies of the
gluon spectrum [14].

Spatial Wilson loops at very early times τ have recently been
studied numerically in Ref. [15], using the MV model [7,8]. for
the colliding color charge sheets. It was observed that the loops
effectively satisfy area law scaling for radii � 1/Q s, up to a few
times this scale. Furthermore, Ref. [16] found that two-point cor-
relators of Bz over distances � 1/Q s correspond to two dimen-
sional screened propagators with a magnetic screening mass a few
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times Q s. This indicates that the initial fields exhibit structure such
that magnetic flux does not spread uniformly over the transverse
plane (like in a Coulomb phase) but instead is concentrated in
small domains.

The present paper extends this previous work as follows. We
perform lattice measurements of spatial Wilson loops over a much
broader range of radii to analyze their behavior at short (R �
1/Q s) and long (R � 1/Q s) distances. We also implement the
so-called JIMWLK [3,17,18] high-energy functional renormaliza-
tion group evolution which resums observables to all orders in
αs log(1/x). High-energy evolution modifies the classical ensemble
of gauge field configurations (4), (5) to account for nearly boost
invariant quantum fluctuations at rapidities far from the sources.
Finally, we also solve the Yang–Mills equations in the forward light
cone to study the time evolution of magnetic flux loops.

The calculation of the initial conditions and the numerical solu-
tion of the classical boost-invariant1 Yang–Mills fields in the initial
stages of a heavy ion collision have been documented in the refer-
ences given below, so here we will only describe them very briefly
in Section 2 before moving on to show our results in Sections 3
and 4.

2. Lattice implementation

We work on a two dimensional square lattice of N2⊥ points with
periodic boundary conditions and consider color sources that fill
the whole transverse plane. The lattice spacing is denoted as a,
thus the area of the lattice in physical units is L2 = N2⊥a2. The
calculations are performed for Nc = 3 colors. In this work we only
consider symmetric collisions, where the color charges of both col-
liding nuclei are taken from the same probability distribution.

In this work we compare three different initial conditions for
the classical Yang–Mills equations: the classical MV model (5) as
well as fixed and running coupling JIMWLK evolution. We define
the saturation scale Q s(Y ) at rapidity Y through the expectation
value of the dipole operator as

1

Nc

〈
Tr V †(xT )V (yT )

〉
Y ,|xT −yT |=√

2/Q s
= e−1/2. (3)

Throughout this paper we shall use Q s defined in this way from
the light-like Wilson lines V (xT ) in the fundamental representa-
tion. The saturation scale is the only scale in the problem and we
attempt to construct the various initial conditions in such a way
that the value of Q sa is similar, to ensure a similar dependence on
discretization effects.

In the MV model the Wilson lines are obtained from a classical
color charge density ρ as

V (xT ) = Pexp

{
i

∫
dx− g2 1

∇2
T

ρa(xT , x−)}
, (4)

where P denotes path-ordering in x− . The color charge density is
a random variable with a local Gaussian probability distribution

P
[
ρa] ∼ exp

{
−

∫
d2xT dx− ρa(xT , x−)ρa(xT , x−)

2μ2(x−)

}
. (5)

The total color charge
∫

dx− μ2(x−) ∼ Q 2
s is proportional to the

thickness of a given nucleus.

1 The YM equations are solved in terms of the coordinates τ = √
t2 − z2, η =

1
2 ln t+z

t−z and xT ; hence ds2 = dτ 2 − τ 2 dη2 − dx2
T .

In the numerical calculation the MV model initial conditions
have been constructed as described in Ref. [13], discretizing the
longitudinal coordinate Y in N y = 100 steps. For the calculations
using the MV model directly for the initial conditions (1), (2)
we have performed simulations on lattices of two different sizes:
N⊥ = 1024, with the MV model color charge parameter g2μL =
156 which translates into Q sa = 0.119; and with N⊥ = 2048, us-
ing g2μL = 550, which results in Q sa = 0.172.

The MV model also provides the configurations used as the ini-
tial condition for quantum evolution in rapidity via the JIMWLK
renormalization group equation, starting at Y = log x0/x = 0. Per-
forming a step �Y in rapidity opens phase space for radiation of
additional gluons which modify the classical action (4), (5). This
process can be expressed as a “random walk” in the space of light-
like Wilson lines V (xT ) [18–20]:

∂Y V (xT ) = V (xT )
i

π

∫
d2uT

(xT − uT )iηi(uT )

(xT − uT )2

− i

π

∫
d2vT V (vT )

(xT − vT )iηi(vT )

(xT − vT )2
V †(vT )V (xT ),

(6)

where the Gaussian white noise ηi = ηi
ata satisfies 〈ηa

i (xT )〉 = 0
and, for fixed coupling,〈
ηa

i (xT )ηb
j (yT )

〉 = αsδ
abδi jδ

(2)(xT − yT ). (7)

Here the equation is written in the left–right symmetric form in-
troduced in [20,21].

The fixed coupling JIMWLK equation is solved using the numer-
ical method developed in [19,20,22]. For the smaller lattice size
N⊥ = 1024 we start with the MV model with g2μL = 31 and with-
out a mass regulator, which corresponds to an initial Q sa = 0.0218.
After �y = 1.68/αs units of evolution in rapidity2 this results
in Q sa = 0.145. For an N⊥ = 2048-lattice we again start with
g2μL = 31, corresponding to Q sa = 0.0107, and after �y = 1.8/αs
units of evolution end up with Q sa = 0.141.

For running coupling the evolution is significantly slower. We
use the running coupling prescription introduced in [20], where
the scale of the coupling is taken as the momentum conjugate to
the distance in the noise correlator in Eq. (7). For the smaller N⊥ =
1024 lattice we again start with g2μL = 31, i.e. Q sa = 0.0218 and
evolve for �Y = 10 units in rapidity, arriving at Q sa = 0.118. For
the larger N⊥ = 2048 lattice we test a configuration that is farther
from the IR cutoff, starting the JIMWLK evolution with g2μL =
102.4, i.e. Q sa = 0.0423 and evolve for �Y = 10 units in rapidity,
arriving at Q sa = 0.172. In the rc-JIMWLK simulations the QCD
scale is taken as ΛQCDa = 0.00293 and the coupling is frozen to a
value α0 = 0.76 in the infrared below 2.5ΛQCD.

As already mentioned above, RG evolution in rapidity resums
quantum corrections to the fields α

μ
m of the individual charge

sheets to all orders in αs log 1/x, with leading logarithmic accu-
racy. In other words, the effective action at Y is modified from
that at Y = 0, written in Eq. (5).

Once an ensemble of Wilson lines V (xT ) at a rapidity Y is
constructed, separately for both projectile and target, these con-
figurations define αi

1 and αi
2 in light-cone gauge as written in

Eq. (1); the initial field Ai of produced soft gluons at proper
time τ = +0 corresponds to their sum, Eq. (2). The evolution to
τ > 0 follows from the real-time Hamiltonian evolution described
in Ref. [11]. This has been used in many classical field calculations,

2 For fixed coupling the evolution variable is αs y, so we do not need to specify a
particular value of αs separately.
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