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Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the
cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much
attention has been attracted to the N = 4 D = 4 SYM theory. The N = (1,1) D = 6 SYM theory possesses
similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider
the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-
helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the
N = 4 D = 4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences
on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their
summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated
up to six loops. Their summation is performed numerically and leads to a smooth function of s. The
leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression
which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable
theories.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In the last decade there has been considerable activity on the
calculation of the amplitudes in maximally supersymmetric Yang–
Mills theories (SYM) [1,2] and maximally supersymmetric grav-
ity [3]. Gauge and gravity SUSY theories in D = 4 such as the
N = 4 SYM and N = 8 SUGRA are the most important examples.
These theories are believed to possess several remarkable prop-
erties, among which are total or partial cancelation of UV diver-
gences, factorization of higher loop corrections and possible inte-
grability. The success of factorization leading to the BDS ansatz [1]
for the amplitudes in D = 4 N = 4 SYM stimulated similar activ-
ity in other models and dimensions. Many magnificent insights in
the structure of amplitudes (the S-matrix) of gauge theories in var-
ious dimensions (for review see, for example, [4]) were obtained.
It was understood that the structure of the integrands in all these
theories is the same and has an imprint of conformal and dual
conformal invariance [5–7]. As a result, the structure of the UV
divergences is also similar, in particular, the boundary where the
first divergences in SYM appear happens to be given by the uni-
versal formula [8–10]

D = 4 + 6/L, (1)
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where D is the dimension and L is the number of loops. The struc-
ture of the amplitudes (and divergences) in SUGRA was also found
to be linked to the SYM [11]. This renewed attempts to check the
finiteness of the D = 4 N = 8 SUGRA [3,12].

All this activity became possible with the development of new
techniques: the spinor helicity and momentum twistor formalisms,
different sets of recurrence relations for the tree level amplitudes,
the unitarity based methods for loop amplitudes and different re-
alizations of the on-shell superspace technique for theories with
supersymmetry [4]. These techniques were generalized to a space–
time dimension greater than D = 4 [13–15].

In this note, we consider one of these theories, namely, the
D = 6 N = (1,1) SYM. This is a maximal supersymmetric theory in
D = 6 dimensions, after additional compactification on two-torus
it is reduced to the D = 4 N = 4 SYM. It can also be consid-
ered as a special low energy limit (the effective actions on the
5-branes [16]) of the string/M theory. It is believed that this the-
ory is also exceptional; at the same time, it is nonrenormalizable
by power counting, the coupling constant has a dimension −2 in
mass units like in D = 4 gravity. Therefore, this theory serves as
a toy model for quantum gravity.

Investigation of this theory which we performed within the
spinor-helicity and superfield formalism has led us to some far-
reaching conclusions. We first present our calculations which we
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performed up to 5 and 6 loops and then make some speculations
concerning nonrenormalizable theories.

2. Color decomposition, spinor helicity and superfield formalism
in D = 6 N = (1,1) SYM

The aim is to calculate the multiparticle amplitudes on mass
shell. For this purpose, we first perform the color decomposition
extracting the color ordered partial amplitude [4]

Aa1...an
n

(
pλ1

1 . . . pλn
n

)
=

∑
σ∈Sn/Zn

T r
[
σ

(
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)]
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(
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)) +O(1/Nc).

(2)

The color ordered amplitude An is evaluated in the planar limit
which corresponds to Nc → ∞, g2

YM → 0 and g2
YM Nc – fixed.

The next step is to use the spinor helicity formalism and on-
shell methods [4]. Their advantage is that one calculates explic-
itly the physical amplitude with external states of a given helicity
without unphysical degrees of freedom, gauge fixing, ghosts, etc.,
the usual attributes of a gauge theory. The description of the spinor
helicity formalism can be found in [14,17]. Applying it one can
rewrite the on-shell amplitudes in a compact form. For example,
using the six dimensional version of the BCFW recurrence relation
the tree level 4 gluon color ordered amplitude A4 can be written
as

A(0)
4 (1aȧ2bḃ3cċ4dḋ) = −ig2

YM
〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ]

st
, (3)

where 1, 2, 3 and 4 are external momenta, 〈1a2b3c4d〉 .= εABC D ×
λAa

1 λBb
2 λCc

3 λDd
4 and [1ȧ2ḃ3ċ4ḋ] .= ε ABC D λ̃ȧ
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ḃ
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ḋ
D,4, λAa

i and

λ̃ȧ
A,i being the spinors associated with momenta p AB

i of ith par-
ticle. A, B = 1, . . . ,4 are the fundamental representation of the
Spin(SO(5,1)) � SU(4)∗ indices, a = 1,2 and ȧ = 1̇, 2̇ are the D = 6
little group SO(4) � SU(2) × SU(2) indices. Note that in D = 6 for
the massless states helicity is no longer conserved in contrast to
the D = 4 case.

The superfield formalism allows one to take into account the
full strength of the N = (1,1) supersymmetry. The self-consistent
way of constructing the superamplitude comprises the harmonic
superspace techniques developed in [17]. It results in the following
form of the color ordered n-particle superamplitude:
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A and ηa , ηȧ being the bosonic and fermionic coordinates of
N = (1,1) on-shell momentum superspace, and Pn is a polyno-
mial with respect to η and η of degree of 2n − 8.

We further concentrate on the four point amplitude. In this
case, the degree of Grassmannian polynomial P4 is 0; hence P4
is a function of bosonic variables only
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Comparing this expression with (3) one concludes that the tree
level 4-point superamplitude can be written in a very compact
form:

A(0)
4 = −ig2

YMδ6(p AB) δ4(qA)δ4(qA)

st
. (7)

What is essential, at any order of PT the amplitude is propor-
tional to the bosonic and fermionic δ-function of reflecting the
(super)momentum conservation as in (6). This means that the tree
level amplitude always factorizes and we get a universal expression
for the color ordered superamplitude with the radiative correc-
tions:

A4(s, t) = A(0)
4 (s, t)[1 + loop corrections]. (8)

For the loop corrections one has expansion which due to a uni-
versal form of the integrands in any SYM theory coincides with
the one in D = 4 N = 4 SYM up to dimensional factors since
in D = 6 dimensions the coupling has a mass dimension equal
to −2 [7]. This is the consequence of the dual conformal invari-
ance in momentum space [6] equally valid in D = 4 and in D = 6.
A remarkable property of this expansion is that all the bubble and
triangle diagrams cancel and one is left with the sequence of scalar
box diagrams shown in Fig. 1.

3. Perturbation expansion for the amplitudes

Our task here is to calculate the radiative corrections to the four
point amplitude. In what follows we proceed loop by loop. The
first question is: is there any kind of factorization similar to the
BDS formula? The answer is negative for general values of Man-
delstam variables s and t as it was shown in [18] where the two
loop box diagram was calculated. While the one loop box gives
the double logarithm of s/t , the two loop one contains the Polylog
functions. In this situation, we concentrate on the Regge asymp-
totic behaviour when s → ∞ and t < 0 is fixed. Then, all the inte-
grals are expressed in terms of powers of s and t and log2n(s/t).

Since the coupling g2
YM in D = 6 has dimension −2, the ex-

pansion parameter is either g2
YMs or g2

YMt and one can consider
separately the series with the leading powers of s. In what fol-
lows we consider the infinite vertical series of diagrams of Fig. 1
summing up the leading powers of s, the leading logarithms and
the leading UV divergences. Note that the first UV divergence, in
accordance with Eq. (1), is encountered in three loops.

3.1. The leading logarithms

In the Regge limit the main contribution to the leading logs
comes from the vertical multiple boxes, the so-called ladder dia-
grams. For the vertical n-loop ladder diagram Bn(t, s), which is UV
and IR finite, the leading contribution was found in [18] and takes
the form

Bn(t, s) � 1

s

L2n(x)

n!(n + 1)! , L ≡ log(s/t). (9)

Combined with the combinatorial factor s(− t
2 )n this leads to the

series or the leading logarithmical contributions (L.L.) to the am-
plitude
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This series can be summed and represents the Bessel function of
the imaginary argument

∞∑
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y
, y ≡

√
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