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We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski
space–time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropri-
ate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless
fermion field, we derive analytic expressions for the thermal expectation values of the fermion current
and stress–energy tensor. These expressions may provide qualitative insights into the behaviour of ther-
mal rotating states on more complex space–time geometries.
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1. Introduction

In the canonical quantisation of a free field, an object of fun-
damental importance is the vacuum state, from which states con-
taining particles are constructed. For fields of all spins, the process
starts by expanding the classical field in terms of an orthonor-
mal basis of field modes, which are split into positive and neg-
ative frequency modes. The expansion coefficients are promoted
to operators, the expansion coefficients of the positive frequency
modes being particle annihilation operators.1 The vacuum state is
defined as the state annihilated by all the particle annihilation op-
erators. The definition of a vacuum state is therefore dependent on
how the field modes are split into positive and negative frequency
modes. This split is restricted for a quantum scalar field by the fact
that positive frequency modes must have positive Klein–Gordon
norm. For a quantum fermion field, both positive and negative fre-
quency fermion modes have positive Dirac norm, so the split of the
field modes into positive and negative frequency is less constrained
compared with the scalar field case. There is therefore more free-
dom in how the vacuum state is defined for a fermion field, lead-
ing to more freedom in how states containing particles are defined.

In this letter we explore this difference between scalar and
fermion quantum fields by considering the definition of rotating
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also particle annihilation operators. For a real scalar field, these annihilation opera-
tors are the same as the expansion coefficients of the positive frequency modes; for
a fermion field they are different.

vacuum and thermal states in Minkowski space. This toy model
reveals that there are quantum states which can be defined for a
fermion field but which have no analogue for scalar fields.

2. Rotating scalars

We consider Minkowski space in cylindrical coordinates (tMink,

ρ,ϕMink, z).2 We wish to define quantum states which are rigidly
rotating with angular velocity �. Choosing the z axis of the coordi-
nate system along the angular velocity vector �, the line element
of the rotating space–time can be found by making the transfor-
mation ϕ = ϕMink − ΩtMink, t = tMink in the usual Minkowski line
element, giving:

ds2 = −(
1 − ρ2Ω2)dt2 + 2ρ2Ω dt dϕ + dρ2 + ρ2 dϕ2 + dz2.

(1)

The Killing vector ∂t , which defines the co-rotating Hamiltonian
H = i∂t , becomes null on the speed-of-light surface (SOL), defined
as the surface where ρ = Ω−1. The Klein–Gordon equation for a
scalar field of mass μ on the space–time (1) is:[
−(H + ΩLz)

2 + L2
z

ρ2
+ P 2

z − ∂2
ρ − ∂ρ

ρ
+ μ2

]
Φ(x) = 0, (2)

where P z = −i∂z and Lz = −i∂ϕ are the z components of the mo-
mentum and angular momentum operators, respectively. The mode
solutions of (2) are:

2 Throughout this paper we use units in which c = h̄ = kB = 1.
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fωkm(x) = 1√
8π2|ω|e−iω̃t+imϕ+ikz Jm(qρ), (3)

where Jm(qρ) is the Bessel function of the first kind of order m,
m is the eigenvalue of Lz , k is the eigenvalue of P z , q is the lon-
gitudinal component of the momentum and ω = ±√

μ2 + q2 + k2

gives the Minkowski energy of the mode. The eigenvalue of the
Hamiltonian, ω̃ = ω − Ωm, represents the energy of the mode as
seen by a co-rotating observer. It is convenient to introduce the
shorthand j = (ω j,k j,m j) and

δ
(

j, j′
) = δm jm j′ δ(k j − k j′)

δ(ω j − ω j′)

|ω j| . (4)

Using the Klein–Gordon inner product:

〈 f , g〉 = −i

∫
d3x

√−g
(

f ∗∂t g − g∂t f ∗), (5)

the norm of the modes (3) can be calculated:

〈 f j, f j′ 〉 = ω j

|ω j|δ
(

j, j′
)
. (6)

As discussed by Letaw and Pfautsch [1], particles must be de-
scribed by modes with positive norm (ω j > 0), implying the fol-
lowing expansion for the scalar field operator:

Φ(x) =
∞∑

m j=−∞

∞∫
μ

ω j dω j

p j∫
−p j

dk j
[

f j(x)a j + f ∗
j (x)a†

j

]
, (7)

where p j =
√

q2
j + k2

j is the Minkowski momentum. The one-

particle annihilation and creation operators, a j and a†
j , satisfy

the canonical commutation relations [a j,a†
j′ ] = δ( j, j′). The in-

duced vacuum state |0〉, satisfying a j |0〉 = 0, coincides with the
Minkowski vacuum [1].

At finite inverse temperature β = T −1, Vilenkin [2] gives the
following thermal expectation value (t.e.v.):〈
a†

ja j′
〉
β

= δ( j, j′)
eβω̃ j − 1

. (8)

The above expression cannot hold when ω̃ j < 0 [2], since it would

imply that the vacuum expectation value of a†
ja j′ , obtained by tak-

ing the limit β → ∞, is non-zero, contradicting the definition of
the vacuum. Furthermore, the divergent behaviour of the thermal
weight factor of modes with ω̃ close to 0 renders t.e.v.s infinite,
causing rotating thermal states for scalar fields to be ill-defined
everywhere in the space–time [2,3]. As discussed by [2,3], a resolu-
tion to these problems is to enclose the system inside a boundary
located inside or on the SOL, restricting wavelengths such that ω̃
stays positive for all values of m.

3. Rotating fermions

In the Cartesian gauge [4], a natural frame for the metric (1)
can be chosen to be:

et̂ = ∂t − Ω∂ϕ, eî = ∂i . (9)

In the following, hats shall be used to indicate tensor components
with respect to the tetrad, i.e. Aμ = Aα̂eμ

α̂
. The Dirac equation for

fermions of mass μ takes the form:[
γ t̂(H + ΩMz) − γ · P − μ

]
ψ(x) = 0, (10)

where the gamma matrices are in the Dirac representation [5] and
the covariant derivatives are given by:

iDt̂ = H + ΩMz, −iD ĵ = P j . (11)

The momentum operators P j and angular momentum operator Mz
are:

P j = −i∂ j, Mz = −i∂ϕ + 1

2

(
σ3 0
0 σ3

)
. (12)

The Dirac equation (10) admits the following solutions:

Uλ
Ekm(x) = 1√

8π2
e−i Ẽt+ikz

⎛⎝
√

1 + μ
E φλ

Ekm

2λE
|E|

√
1 − μ

E φλ
Ekm

⎞⎠ , (13)

where the two-spinor φλ
Ekm is defined as:

φλ
Ekm(ρ,ϕ) = 1√

2

⎛⎝
√

1 + 2λk
p eimϕ Jm(qρ)

2iλ
√

1 − 2λk
p ei(m+1)ϕ Jm+1(qρ)

⎞⎠ , (14)

where λ is the helicity [4,5], p = √
q2 + k2 is the magnitude of

the momentum and E = ±√
p2 + μ2 controls the sign of the

Minkowski energy of the mode. The eigenvalues of the Hamilto-
nian are Ẽ = E − Ω(m + 1

2 ), representing, as in the scalar case,
the energy seen by a co-rotating observer. The notations j =
(E j,k j,m j, λ j) and

δ
(

j, j′
) = δλ jλ j′ δm jm j′ δ(k j − k j′)

δ(E j − E j′)

|E j| (15)

are useful to refer to modes and their norms. The latter can be
computed using the Dirac inner product:

〈ψ,χ〉 =
∫

d3x
√−g ψ†(x)χ(x). (16)

It can be shown that 〈U j, U j′ 〉 = δ( j, j′) for all possible labels j, j′ .
After choosing a suitable definition for particle modes (i.e. a range
for the labels in j), the anti-particle modes can be constructed us-

ing charge conjugation [4,5]: V j = iγ 2̂U∗
j . Hence, V j automatically

inherits the same normalisation as U j , namely: 〈V j, V j′ 〉 = δ( j, j′).
Therefore there is no restriction on how the split into particle and
anti-particle modes is performed, as long as the charge conjuga-
tion symmetry is preserved.

According to Vilenkin [2], the definition of particles for co-
rotating observers should be the same as for inertial Minkowski
observers, with the field operator written as:

ψV (x) =
∑

λ j=± 1
2

∞∑
m j=−∞

∞∫
μ

E j dE j

p j∫
−p j

dk j

× [
U j(x)b j;V + V j(x)d†

j;V

]
. (17)

Vilenkin’s quantisation is equivalent to the one suggested by Letaw
and Pfautsch [1] for the scalar field, yielding a vacuum state equiv-
alent to the Minkowski vacuum. In contrast, Iyer [6] argues that
the modes which represent particles for a co-rotating observer
have positive frequency with respect to the co-rotating Hamilto-
nian, implying the following expression for the field operator:

ψI (x) =
∑

λ j=± 1
2

∞∑
m j=−∞

∞∫
Ẽ j>0,|E j |>μ

E j dE j

p j∫
−p j

dk j

× [
U jb j;I + V j(x)d†

j;I

]
, (18)

with the integral with respect to E j running over both positive and
negative values of E j , as long as Ẽ j > 0 and |E j | > μ. Both quan-
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