
Physics Letters B 734 (2014) 328–332

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Dynamics of monopole walls

R. Maldonado, R.S. Ward ∗

Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 May 2014
Accepted 22 May 2014
Available online 28 May 2014
Editor: L. Alvarez-Gaumé

Keywords:
Monopole
Moduli-space
Monopole-wall

The moduli space of centred Bogomolny–Prasad–Sommerfield 2-monopole fields is a 4-dimensional 
manifold M with a natural metric, and the geodesics on M correspond to slow-motion monopole 
dynamics. The best-known case is that of monopoles on R3, where M is the Atiyah–Hitchin space. More 
recently, the case of monopoles periodic in one direction (monopole chains) was studied a few years ago. 
Our aim in this note is to investigate M for doubly-periodic fields, which may be visualized as monopole 
walls. We identify some of the geodesics on M as fixed-point sets of discrete symmetries, and interpret 
these in terms of monopole scattering and bound orbits, concentrating on novel features that arise as a 
consequence of the periodicity.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The observation that the dynamics of Bogomolny–Prasad–Som-
merfield (BPS) monopoles can be approximated as geodesics on 
the moduli space M of static solutions [1] has proved to be 
far-reaching. Not only does it reveal much about monopole dy-
namics, but the moduli spaces themselves are of considerable 
interest, for example in string theory. The best-known case is 
that of the centred 2-monopole system on R3, where M is a 
4-dimensional asymptotically-locally-flat (ALF) space, namely the 
Atiyah–Hitchin manifold [2,3]. For monopoles periodic in one di-
rection, in other words on R2 × S1, the asymptotic behaviour of 
the centred 2-monopole moduli space is different, and is called 
ALG [4]. In this case, the generalized Nahm transform has been 
used to describe some of the geodesics on the moduli space, and 
their interpretation in terms of periodic monopole dynamics [5,6].

This paper focuses on the doubly-periodic case, namely BPS 
monopoles on T 2 × R, also referred to as monopole walls [7,8]. 
An N-monopole field which is periodic in the x- and y-directions 
may be viewed as a set of N monopole walls, each extended in 
the xy-direction. Much is known about the general classification of 
the moduli spaces of such solutions, and their string-theoretic in-
terpretation [8,9]. We shall restrict our attention here to the case 
of smooth 2-monopole fields with gauge group SU(2); the centred 
moduli space M is then a four-dimensional hyperkähler manifold 
with so-called ALH boundary behaviour [10]. The asymptotic form 
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of its metric has recently been derived [11]. Our aim here is to 
identify some of the geodesics on M as fixed-point sets of discrete 
symmetries, and to interpret these in terms of monopole scatter-
ing, concentrating on novel features that arise as a consequence of 
the periodicity.

The system, therefore, consists of a smooth SU(2) gauge poten-
tial A j on T 2 × R, plus a Higgs field Φ in the adjoint representa-
tion. The fields satisfy the Bogomolny equation D jΦ = −B j , where 
B j = 1

2 ε jkl Fkl is the SU(2) magnetic field. The coordinates are x j =
(x, y, z), where x and y are periodic with period 1, and z ∈ R. The 
boundary condition (see [7,8] for more detail) is |Φ|/|z| → const
as z → ±∞. There are two topological charges Q ± , which are 
non-negative integers defined in terms of the winding number 
of Φ . More precisely, if Φc := Φ|z=c , then Φ̂c := Φc/|Φc| is a 
map from T 2 to S2, and we define Q ± := ± deg Φ̂±c for c � 1. 
The number of monopoles is N = Q + + Q − , and we are inter-
ested in the case N = 2, so there are three possibilities, namely 
(Q −, Q +) = (1, 1), (0, 2) or (2, 0). In fact, the corresponding mod-
uli spaces are isometric [9]. In what follows, we shall concentrate 
on the (1, 1) wall, namely Q − = Q + = 1.

2. Parameters and moduli of the (1, 1) wall

We begin by reviewing the parameters, the moduli, the energy, 
and the spectral data of the (1, 1) wall, using the same conventions 
and notation as in [8]. There exists a (non-periodic) gauge such 
that the boundary behaviour of the fields is

Φ ∼ 2π i(z + M±)σ3, A j → π i(y − 2p±,−x − 2q±,0)σ3 (1)

as z → ±∞. The six real constants (M±, p±, q±) are the boundary-
value parameters, with M± ∈ R and p±, q± ∈ (− 1

2 , 12 ]. Fixing the 
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centre-of-mass of the system amounts to fixing (M−, p−, q−) in 
terms of the other three parameters (M+, p+, q+). Henceforth, we 
fix the centre-of-mass to be at the point (x, y, z) = ( 1

2 , 12 , 0), and 
the field is then invariant (up to a gauge transformation) under the 
map (x, y, z) �→ (1 − x, 1 − y, −z) plus Φ �→ −Φ . In effect, the sys-
tem as a whole has infinite mass, and only the relative separation 
and phase of the two monopoles appear in the moduli space; the 
space of fields with fixed (M±, p±, q±), modulo gauge transforma-
tions, is our four-dimensional moduli space M.

The energy density is E = |DΦ|2 + |B|2, and E → 8π2 as z →
±∞. The total energy, i.e. E integrated over T 2 ×R, is consequently 
infinite. But the cut-off energy

E L =
L∫

−L

dz

∫ (|DΦ|2 + |B|2)dxdy (2)

is finite, and if L � −M+ it equals the Bogomolny bound [7]

E L = 16π2(L + M+). (3)

Spectral data for this system may be defined as follows [8]. Put

W x = trP exp

1∫

0

(−Ax − iΦ)dx,

W y = trP exp

1∫

0

(−A y − iΦ)dy.

Then W x and W y have the form

W x = W x(s) = (
s + s−1)exp

[
2π(M+ + ip+)

] + 2Dx, (4)

W y = W y(s̃) = (
s̃ + s̃−1)exp

[
2π(M+ + iq+)

] + 2D y, (5)

where s = exp[2π(z − iy)] and s̃ = exp[2π(z + ix)], and where Dx , 
D y are complex constants. The real and imaginary parts of Dx

and D y are moduli; but they are not independent, so do not pro-
vide all the moduli.

The Nahm transform maps walls to walls, although in general 
the gauge group, the topological charges, and the number of Dirac 
singularities change [8,9]. In our case, however, these properties do 
not change: the Nahm transform of a smooth SU(2) wall of charge 
(1, 1) is again of that type. The action of a Nahm transform on the 
parameters and the moduli is as follows:

(M+, p+,q+) �→ (−M+,−p+,−q+), (6)

Dx �→ −Dx exp
[−2π(M+ + ip+)

]
, (7)

D y �→ −D y exp
[−2π(M+ + iq+)

]
. (8)

These expressions follow from the fact that the x-spectral curve, 
given by t2 − tW x(s) + 1 = 0, is invariant under the Nahm trans-
form, which acts by interchanging the variables t and s; and simi-
larly for the y-spectral curve [8].

3. The asymptotic region of M

In order to understand the role played by the parameters and 
the moduli, let us first look at the asymptotic region of moduli 
space M, which consists of those fields for which |Φ|z=0 � 1. It 
follows from this condition that Dx and D y have the approximate 
form

Dx ≈ cosh
[
2π(M + ip)

]
, D y ≈ cosh

[
2π(M + iq)

]
, (9)

Fig. 1. Higgs field and energy density of a well-separated two-wall solution.

with M � max{1, M+}. Three of the four asymptotic moduli are M
and p, q ∈ (− 1

2 , 12 ]. The walls are located at values of z for which 
W x(s) has zeros, and we see from (4) that this occurs for z =
z± = ±(M − M+); so we have two well-separated walls. Note 
that |Dx| ≈ |D y | up to exponentially small corrections, so we 
could equally well have used the zeros of W y(s̃) to define the 
wall locations; but this is only true asymptotically, and not in 
the core region of M. Each wall has a monopole embedded in 
it, the monopole locations R± = (x±, y±, z±) being defined to be 
where W x(s) = 0 = W y(s̃). Numerical solutions indicate that this 
is where Φ is zero, and also where the energy density is peaked. 
It follows from (4, 5) that the location of the z > 0 monopole is 
R+ = ( 1

2 + q − q+, 12 − p + p+, M − M+).
The energy density is approximately zero for z− < z < z+ (be-

tween the two walls), and tends to 8π2 as z → ±∞. See Fig. 1, 
which depicts a solution with M+ = −0.92 and Dx = D y = 6.21; 
this solution was obtained numerically by minimizing the func-
tional (2). The left-hand plot is of |Φ| on the line x = y = 1

2 , where 
the monopoles are located. The right-hand plot is of the normal-
ized, xy-averaged energy density (8π2)−1

∫
Edxdy, as a function 

of z. Between the walls, the function |Φ| is approximately con-
stant; in fact |Φ| ≈ 2π M .

In view of the shape of the energy density, one might have 
expected that E L could be reduced by moving the walls further 
apart, i.e. by increasing M: it looks like an increase δM in M would 
give δE L = −16π2δM , as the central region (where E is zero) in-
creases in size. But in fact as M increases and the walls move 
apart, the energy contained in each monopole increases by 8π2δM . 
This is because each monopole resembles an R3 monopole with 
|Φ|∞ = 2π M and therefore energy 8π2M . So the total energy E L

is independent of M , as it must be from (3). Note, however, that 
stability involves fixing the value of the parameter M+ , and reduc-
ing M+ really does lower the energy. This is analogous to having 
to fix the boundary value of |Φ| in the R3 case.

Furthermore, the size of each monopole core is proportional 
to M−1, and therefore one may think of them as small SU(2) 
monopoles embedded in an ambient U(1) field. So the asymp-
totic moduli are analogous to those of the R3 case: three moduli 
(M, p, q) determine the relative location of the two monopoles, 
and the fourth is a relative phase ω ∈ (−π, π ] between them. The 
asymptotic metric, in our coordinates (M, p, q, ω), takes the hyper-
kähler form [11]

ds2 = π W
(
dM2 + dp2 + dq2)

+ π W −1[dω − 8π(qdp − pdq)
]2

, (10)

where W = W (M) = 8π(2M − M+). Here, for simplicity, we have 
set p+ = q+ = 0. Note from (10) that R = M3/2 is an affine param-
eter on asymptotic ‘radial’ geodesics p, q, ω constant. The volume 
VolR of a ball of radius R scales like VolR ∼ R4/3, and so M is of 
ALH type [10].
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