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We discuss the general dynamical behaviors of quintessence field, in particular, the general conditions for
tracking and thawing solutions are discussed. We explain what the tracking solutions mean and in what
sense the results depend on the initial conditions. Based on the definition of tracking solution, we give
a simple explanation on the existence of a general relation between wφ and Ωφ which is independent
of the initial conditions for the tracking solution. A more general tracker theorem which requires large
initial values of the roll parameter is then proposed. To get thawing solutions, the initial value of the roll
parameter needs to be small. The power-law and pseudo-Nambu Goldstone boson potentials are used to
discuss the tracking and thawing solutions. A more general wφ–Ωφ relation is derived for the thawing
solutions. Based on the asymptotical behavior of the wφ–Ωφ relation, the flow parameter is used to give
an upper limit on w ′

φ for the thawing solutions. If we use the observational constraint wφ0 < −0.8 and
0.2 < Ωm0 < 0.4, then we require n � 1 for the inverse power-law potential V (φ) = V 0(φ/mpl)

−n with
tracking solutions and the initial value of the roll parameter |λi | < 1.3 for the potentials with the thawing
solutions.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The recent cosmic acceleration observed by type Ia supernova
data [1] was usually explained by introducing a dynamical scalar
field called quintessence [2–4]. More general dynamical scalar field
models such as phantom [5], quintom [6], tachyon [7] and k-
essence [8] were also proposed. For a recent review of dark energy,
please see Ref. [9].

For a dynamical scalar field φ with the potential V (φ) in
the flat Friedmann–Lemaître–Robertson–Walker universe with the
metric ds2 = −dt2 + a2(t)(dr2 + r2 dθ2 + r2 sin2 θ dφ2), its energy
density and pressure are ρφ = φ̇2/2 + V (φ) and pφ = φ̇2/2 − V (φ),
where φ̇ = dφ/dt . The scalar field rolls down a very shallow poten-
tial while its equation of state wφ = pφ/ρφ approaches −1 and it
starts to dominate the Universe recently. Because the scalar field
catches up the background only recently and the current value
of its equation of state parameter is around −1, wφ does not
change too much in the redshift range 0 � z < 1 for most scalar
fields, so the time variation of wφ is bounded for the thawing and
freezing models [10–18]. In general, the evolution of scalar field
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depends on the initial conditions. However, the attractor solutions
and the tracking solutions are independent of the initial condi-
tions [19–36]. In particular, the tracker field φ tracks below the
background density for most of the history of the Universe until
it starts to dominate recently for a wide range of initial condi-
tions, and there exists a relation between wφ and the fractional
energy density Ωφ = 8πGρφ/(3H2) today, where the Hubble pa-
rameter H(t) = ȧ/a. There also exists a general wφ–Ωφ relation
for the thawing solutions which is well approximated by some
analytical expressions [37–47]. In this Letter, we will discuss the
general dynamics such as the wφ–Ωφ relation and the bound
on w ′

φ = dwφ/d ln a of the tracking and thawing fields. We use
the power-law potential and the pseudo-Nambu Goldstone boson
(PNGB) potential [48–52] as examples to illustrate the general dy-
namical behaviors of tracking and thawing fields.

If the Universe is filled with the quintessence field and the
background matter with the equation of state wb = [(1/3)aeq/a]/
[1 + aeq/a], where aeq = 1/3403 [53] is the scale factor a(t) at the
matter-radiation equality, then in terms of the dimensionless vari-
ables,

x = φ′
√

6
= 1√

6
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V

dV

dφ
, Γ = V V ,φφ

V 2
,φ

, (1)
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the cosmological equations are
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λ′ = −√
6λ2(Γ − 1)x. (4)

The fractional energy density and the equation of state of the
scalar field are

Ωφ = x2 + y2, wφ = x2 − y2

x2 + y2
. (5)

Using the fractional energy density Ωφ and the parameter γ =
1 + w , Eqs. (2)–(4) become

Ω ′
φ = 3(γb − γφ)Ωφ(1 − Ωφ), (6)

γ ′
φ = (2 − γφ)

(−3γφ + |λ|√3γφΩφ

)
, (7)

λ′ = −√
3γφΩφλ|λ|(Γ − 1). (8)

From Eq. (7), we get a lower limit w ′
φ � −3(1 + wφ)(1 − wφ).

If the tracker parameter Γ can be expressed as a function of the
roll parameter λ, then the above system (6)–(8) becomes an au-
tonomous system. In this case, we have additional critical point
Ωφc = 1 and γc = 0 which is absent in the system (2)–(4), where
the subscript c means the critical point. At the point x = 0 and
y = 1, the transformation from (x, y) to (Ωφ,γ ) is singular, so we
get different critical points. Only when λc = 0, the point x = 0 and
y = 1 is the critical point of the system (2)–(4). For the exponen-
tial potential, the point x = 0 and y = 1 is not a critical point for
the system (2)–(4) and the critical point Ωφc = 1 and γc = 0 for
the system (6)–(8) is not a stable point.

If we use the flow parameter F = γφ/(Ωφλ2) [16], then Eq. (7)
can be written as

γ ′
φ = 3γφ(2 − γφ)(−1 + 1/

√
3F ). (9)

To understand the general dynamics of the quintessence, it is use-
ful to use the function β = φ̈/(3Hφ̇) [16,44],

β = −1 + 1 − wφ√
12F

= 1

2

[
Ωφγφ + (1 − Ωφ)γb

] − β ′

3(1 + β)
− V ,φφ

9(1 + β)H2
. (10)

For the thawing solution, the quintessence field rolls down the
potential very slowly, V ,φφ ≈ 0 and β is almost a constant, so
β ≈ γb/2 at early time when Ωφ ≈ 0 and wφ ≈ −1 [44].

2. Tracker solution

The energy density of the tracker field φ tracks below the back-
ground density for most of the history of the Universe, it starts
to dominate the energy density only recently and then drives the
cosmic acceleration. The tracker fields have attractor-like solutions
in the sense that they rapidly converge to a common cosmic evo-
lutionary track of ρφ(t) and wφ(t) for a very wide range of initial
conditions, so the tracking solutions are extremely insensitive to
the initial conditions [4,22]. Furthermore, an important relation be-
tween wφ and Ωφ today was found for the tracker field. When
the tracker field enters the tracking solution, it satisfies the tracker
condition [22]

γφ = 1 + wφ = 1

3
λ2Ωφ, (11)

thus this condition is the initial condition of tracking solution. In
other words, the initial condition for the tracking solution reads
F = 1/3. From Eq. (7), we see that γ ′

φ = 0 when the tracker condi-
tion is satisfied, so it is possible that wφ stops varying. On the
other hand, the quintessence field satisfies the tracker equation
[22,28]

Γ − 1 = 3(wb − wφ)(1 − Ωφ)

(1 + wφ)(6 + x̃′)
− (1 − wφ)x̃′

2(1 + wφ)(6 + x̃′)

− 2x̃′′

(1 + wφ)(6 + x̃′)2
, (12)

where x̃ = ln[(1 + wφ)/(1 − wφ)] and x̃′ = d ln x̃/d ln a. For the
tracking solution, wφ is nearly constant, so x̃′ ≈ x̃′′ ≈ 0, and we
get

wφ ≈ wb(1 − Ωφ) − 2(Γ − 1)

2Γ − 1 − Ωφ

< wb (Γ > 1). (13)

If Ωφ ≈ 0 when the tracker condition (11) is satisfied, then

wφ = wtrk
φ = wb − 2(Γ − 1)

2Γ − 1
, (14)

and β = −γb/2(2Γ − 1) are approximately constants if the tracker
parameter Γ is nearly constant, Ωφ ∝ a6γb(Γ −1)/(2Γ −1) increases
with time and λ2 ≈ 3(1 + wtrk

φ )/Ωφ decreases with time. For

the tracker field, V ,φφ/H2 is not negligible, so β �= γb/2. In fact,
V ,φφ/H2 is a constant for the exponential potential when the at-
tractor is reached.

If Ωφ is not small or the tracker parameter changes rapidly
when the tracker condition (11) is satisfied, then wφ won’t keep
to be a time independent constant and it decreases with time
while Ωφ increases to 1, so the scalar field does not track the
background and Eq. (14) does not hold when the tracker condi-
tion (11) is satisfied, but the scalar field has the freezing behavior
with wφ → −1 asymptotically. Therefore, both the tracker condi-
tion (11) and Eq. (14) will be violated when Ωφ is not negligible
or Γ changes rapidly, and wφ keeps decreasing.

For the tracker field, the tracking solution at late times has the
property that γφ → 0 and Ωφ → 1, so γφ should decrease with
time while Ωφ increases with time. When γφ reaches the back-
ground value γb , and λ2 decreases to the value λ2 = 3γφ/Ωφ , then
we reach the tracker condition. After that, γφ decreases toward
to zero and Ωφ increases toward 1. From Eq. (7), we know that
we should keep |λ| <

√
3γφ/Ωφ in order that γ ′

φ < 0, therefore
|λ| should decrease with time and λ → 0 when γφ → 0. For any
quintessence field rolling down its potential, |λ| does not increase
with time is equivalent to Γ � 1 as easily seen from Eq. (8).

For the exponential potential, λ is a constant and Γ = 1. If
λ is small, then eventually γφ will decrease to be less than γb ,
and Ωφ will quickly increase to be 1. In particular, if λ2 < 3γb ,
then the system will reach the attractor solution with Ωφ = 1
and γφ = λ2/3. If λ is big, i.e., λ2 � 3γb , then the attractor so-
lution is γφ = γb = λ2Ωφ/3. Since the above attractors satisfy the
tracker condition (11), so both of them are also tracking solutions.
In Fig. 1, we show the phase diagram for the exponential potential
with λ = 2.1. The original tracking solution found in [22] is inde-
pendent of the value of λ which is in contradiction with the results
for the exponential potential. The contradiction was then resolved
in [28] by deriving the correct tracker equation (12).

With the dynamical Eqs. (6)–(8), we can understand the gen-
eral dynamical evolution of the tracker field as follows: (a) Initially
if Ωφi is not too small or λi is large enough so that λ2

i > 3γφi/Ωφi ,
where the subscript i means the initial value, then γφ will increase
toward 2 independent of the initial value of wφ . Once γφ > γb ,
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