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We discuss the general dynamical behaviors of quintessence field, in particular, the general conditions for
tracking and thawing solutions are discussed. We explain what the tracking solutions mean and in what
sense the results depend on the initial conditions. Based on the definition of tracking solution, we give
a simple explanation on the existence of a general relation between wg and 24 which is independent
of the initial conditions for the tracking solution. A more general tracker theorem which requires large
initial values of the roll parameter is then proposed. To get thawing solutions, the initial value of the roll
parameter needs to be small. The power-law and pseudo-Nambu Goldstone boson potentials are used to
discuss the tracking and thawing solutions. A more general wgs-£24 relation is derived for the thawing
solutions. Based on the asymptotical behavior of the wy-£24 relation, the flow parameter is used to give
an upper limit on w(’ZS for the thawing solutions. If we use the observational constraint wgo < —0.8 and
0.2 < 2mo < 0.4, then we require n <1 for the inverse power-law potential V (¢) = Vo(¢p/mp)~" with
tracking solutions and the initial value of the roll parameter |;| < 1.3 for the potentials with the thawing

solutions.
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1. Introduction

The recent cosmic acceleration observed by type Ia supernova
data [1] was usually explained by introducing a dynamical scalar
field called quintessence [2-4]. More general dynamical scalar field
models such as phantom [5], quintom [6], tachyon [7] and k-
essence [8] were also proposed. For a recent review of dark energy,
please see Ref. [9].

For a dynamical scalar field ¢ with the potential V(¢) in
the flat Friedmann-Lemaitre-Robertson-Walker universe with the
metric ds? = —dt? + a?(t)(dr® + r2d6? + r2sin® 0 d¢?), its energy
density and pressure are py = $2/2+ V (¢) and py = ¢?/2 — V (o),
where ¢ = d¢/dt. The scalar field rolls down a very shallow poten-
tial while its equation of state wg = py/pg approaches —1 and it
starts to dominate the Universe recently. Because the scalar field
catches up the background only recently and the current value
of its equation of state parameter is around —1, wyg does not
change too much in the redshift range 0 < z < 1 for most scalar
fields, so the time variation of wy is bounded for the thawing and
freezing models [10-18]. In general, the evolution of scalar field
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depends on the initial conditions. However, the attractor solutions
and the tracking solutions are independent of the initial condi-
tions [19-36]. In particular, the tracker field ¢ tracks below the
background density for most of the history of the Universe until
it starts to dominate recently for a wide range of initial condi-
tions, and there exists a relation between wg and the fractional
energy density 2, =87 Gpy /(3H?) today, where the Hubble pa-
rameter H(t) = a/a. There also exists a general wy-$2, relation
for the thawing solutions which is well approximated by some
analytical expressions [37-47]. In this Letter, we will discuss the
general dynamics such as the wg-$24 relation and the bound
on w;j =dwy/dIna of the tracking and thawing fields. We use
the power-law potential and the pseudo-Nambu Goldstone boson
(PNGB) potential [48-52] as examples to illustrate the general dy-
namical behaviors of tracking and thawing fields.

If the Universe is filled with the quintessence field and the
background matter with the equation of state wy = [(1/3)aeq/al/
[1 + aeq/al, where aeq =1/3403 [53] is the scale factor a(t) at the
matter-radiation equality, then in terms of the dimensionless vari-
ables,

A= =% (1)
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the cosmological equations are

R v (R N

3 3 3
y'= _\/;knyr 5y +X —y*)+ sy (1 —¥=y’). ()

N = —V6r(I = 1)x. (4)

The fractional energy density and the equation of state of the
scalar field are

B X2 — 2
x4y
Using the fractional energy density £24 and the parameter y =
1+ w, Egs. (2)-(4) become

24 =3(vp — V) 2p (1 — 2), (6)
Yo =2 —vp)(=3vp + IMV/3V652 )., (7)
N = =3V R2pMA(I = 1). (8)

From Eq. (7), we get a lower limit w;> > =31+ wg)(1 — wy).
If the tracker parameter I" can be expressed as a function of the
roll parameter A, then the above system (6)-(8) becomes an au-
tonomous system. In this case, we have additional critical point
£¢c =1 and y. = 0 which is absent in the system (2)-(4), where
the subscript ¢ means the critical point. At the point x = 0 and
y =1, the transformation from (x, y) to (£24,y) is singular, so we
get different critical points. Only when A, =0, the point x =0 and
y =1 is the critical point of the system (2)-(4). For the exponen-
tial potential, the point x =0 and y =1 is not a critical point for
the system (2)-(4) and the critical point £24c =1 and Y, =0 for
the system (6)-(8) is not a stable point.

If we use the flow parameter F = y¢/(Q¢A2) [16], then Eq. (7)
can be written as

Qp=x+y%  wy (5)

Vi =372 — ¥$)(=1+1/v/3F). 9)

To understand the general dynamics of the quintessence, it is use-
ful to use the function 8 =¢/(3H¢) [16,44],

p=—14 122
B JV12F

/

Vv
Vo . (10)
31+B8) 901 +pB)H
For the thawing solution, the quintessence field rolls down the

potential very slowly, V 4, ~ 0 and g is almost a constant, so
B~ yp/2 at early time when 24 =0 and wy ~ —1 [44].

1
= 5[9¢>V¢ + (1= 2s)y] -

2. Tracker solution

The energy density of the tracker field ¢ tracks below the back-
ground density for most of the history of the Universe, it starts
to dominate the energy density only recently and then drives the
cosmic acceleration. The tracker fields have attractor-like solutions
in the sense that they rapidly converge to a common cosmic evo-
lutionary track of pg(t) and wg(t) for a very wide range of initial
conditions, so the tracking solutions are extremely insensitive to
the initial conditions [4,22]. Furthermore, an important relation be-
tween wy and 24 today was found for the tracker field. When
the tracker field enters the tracking solution, it satisfies the tracker
condition [22]

1
)/¢,:1+W¢:§)L2.Q¢, (11)

thus this condition is the initial condition of tracking solution. In
other words, the initial condition for the tracking solution reads
F =1/3. From Eq. (7), we see that yd’) =0 when the tracker condi-
tion is satisfied, so it is possible that wy stops varying. On the
other hand, the quintessence field satisfies the tracker equation
[22,28]

1= 3(Wb — W¢)(] —~.Q¢) _
1+ wg)(6+X%)
22X
(14 wy)(6+X)2

where X = In[(1 + wg)/(1 — wy)] and X’ = dInX/dIna. For the
tracking solution, wy is nearly constant, so X' ~x” ~ 0, and we
get

owp(1—=824) —2(I" = 1)
- 2 —1— 02,
If £24 ~ 0 when the tracker condition (11) is satisfied, then

ok Wy —2(C 1)
R 7

and 8 =—y,/2(2I" — 1) are approximately constants if the tracker
parameter I" is nearly constant, §2, oc a®'=D/@I'=1 increases
with time and A2 ~ 3(1 + ng)/9¢ decreases with time. For

the tracker field, V,¢¢/H2 is not negligible, so 8 # y,/2. In fact,
V /H? is a constant for the exponential potential when the at-
tractor is reached.

If £24 is not small or the tracker parameter changes rapidly
when the tracker condition (11) is satisfied, then wg won't keep
to be a time independent constant and it decreases with time
while £24 increases to 1, so the scalar field does not track the
background and Eq. (14) does not hold when the tracker condi-
tion (11) is satisfied, but the scalar field has the freezing behavior
with wy — —1 asymptotically. Therefore, both the tracker condi-
tion (11) and Eq. (14) will be violated when 2, is not negligible
or I" changes rapidly, and wy keeps decreasing.

For the tracker field, the tracking solution at late times has the
property that y, — 0 and £24 — 1, so ¥, should decrease with
time while £24 increases with time. When y, reaches the back-
ground value y3, and A decreases to the value 12 = 3Yy /824, then
we reach the tracker condition. After that, y, decreases toward
to zero and 4 increases toward 1. From Eq. (7), we know that
we should keep |A| <_1/3)_/¢/.Q¢ in order that Va/ﬁ < 0, therefore
[x| should decrease with time and A — 0 when y,; — 0. For any
quintessence field rolling down its potential, |A| does not increase
with time is equivalent to I" > 1 as easily seen from Eq. (8).

For the exponential potential, A is a constant and I" = 1. If
A is small, then eventually y, will decrease to be less than yj,
and £2, will quickly increase to be 1. In particular, if A% < 3y,
then the system will reach the attractor solution with 24 =1
and y, = A?/3. If A is big, i.e., A% > 3y}, then the attractor so-
lution is yp =yp = AZQ(,) /3. Since the above attractors satisfy the
tracker condition (11), so both of them are also tracking solutions.
In Fig. 1, we show the phase diagram for the exponential potential
with A = 2.1. The original tracking solution found in [22] is inde-
pendent of the value of A which is in contradiction with the results
for the exponential potential. The contradiction was then resolved
in [28] by deriving the correct tracker equation (12).

With the dynamical Eqgs. (6)-(8), we can understand the gen-
eral dynamical evolution of the tracker field as follows: (a) Initially
if §£24; is not too small or A; is large enough so that )Liz > 3Vpi/ i
where the subscript i means the initial value, then Y, will increase
toward 2 independent of the initial value of wg. Once Y4 > Vs,

(1 —wy)¥
20+ wg)(6+%)

(12)

<wp (I'>1). (13)

(14)
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