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We analyze the consequences caused by an anomalous single-particle dispersion relation suggested in
several quantum-gravity models, upon the thermodynamics of a Bose–Einstein condensate trapped in a
generic 3-dimensional power-law potential. We prove that the condensation temperature is shifted as
a consequence of such deformation and show that this fact could be used to provide bounds on the
deformation parameters. Additionally, we show that the shift in the condensation temperature, described
as a non-trivial function of the number of particles and the trap parameters, could be used as a criterion
to analyze the effects caused by a deformed dispersion relation in weakly interacting systems and also in
finite size systems.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.

1. Introduction

The possibility of a deformation in the dispersion relation of
microscopic particles appears in connection with the quest for a
quantum theory of gravity [1–9]. This entails, in some schemes,
that a possible spacetime quantization has as a consequence a
modification of the classical spacetime dispersion relation between
energy E and (modulus of) momentum p of a microscopic parti-
cle with mass m [2,3,5]. A deformed dispersion relation emerges as
an adequate tool in the search for phenomenological consequences
caused by this type of quantum gravity models. Nevertheless, the
principal difficulty in the search of quantum gravity manifestations
in our low energy world is the smallness in the predicted effects
[3,4]. If this kind of deformations is characterized, for instance, by
some Planck scale, then the quantum gravity effects become very
small [2,5]. In the non-relativistic limit, the deformed dispersion
relation can be expressed as follows [5,6]

E � m + p2

2m
+ 1

2Mp

(
ξ1mp + ξ2 p2 + ξ3 

p3

m

)
, (1)

in units where the speed of light c = 1, with Mp � 1.2 × 1028 eV
the Planck mass. The three parameters ξ1, ξ2, and ξ3 are model
dependent [2,5], and should take positive or negative values close
to 1. There is some evidence within the formalism of Loop quan-
tum gravity [5–8] that indicates non-zero values for the three
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parameters, ξ1, ξ2, ξ3, and particularly that produces a linear-
momentum term in the non-relativistic limit [7,9]. Unfortunately,
as it is usual in quantum gravity phenomenology, the possible
bounds associated with the deformation parameters open a wide
range of possible magnitudes, which is translated to a significant
challenge.

On the other hand, the use of Bose–Einstein condensates, as a
possible tool in the search of quantum-gravity manifestations (for
instance, in the context of Lorentz violation or to provide phe-
nomenological constrains on Planck-scale physics) has produced an
enormous amount of interesting publications [10–19]. It turns out
to be rather exciting to look for the effects in the thermodynamic
properties associated with Bose–Einstein condensates caused by
the quantum structure of space–time.

In a previous report [15], we were able to prove that the con-
densation temperature of the ideal bosonic gas is corrected as a
consequence of the deformation in the dispersion relation. More-
over, this correction described as a non-trivial function of the num-
ber of particles and the shape associated with the corresponding
trap could provide representative bounds for the deformation pa-
rameter ξ1. We have proved that the deformation parameter ξ1 can
be bounded, under typical conditions, from |ξ1| � 106 to |ξ1| � 102,
by using different classes of trapping potentials in the thermody-
namic limit. In the case of a harmonic oscillator-type potential,
we have obtained a bound up to |ξ1| � 104. In Refs. [5,6] it was
suggested the use of ultra-precise cold-atom-recoil experiments to
constrain the form of the energy–momentum dispersion relation in
the non-relativistic limit. There, the bound associated with ξ1 is at
least four orders of magnitude smaller than the bound associated
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with a Bose–Einstein condensate trapped in a harmonic oscillator
in the ideal case obtained in [15].

In a more realistic system, finite size effects and interac-
tions among the constituents of the gas must be taken into
account. To this aim, let us propose a particularly simple modified
Hartree–Fock type spectrum, in the semi-classical approximation,
which basically consists in the assumption that the constituents
of the gas behave like non-interacting bosons moving in a self-
consistent mean field, valid when the semiclassical energy spec-
trum εp is bigger than the associated chemical potential μ, for
dilute gases [20,21]

εp = p2

2m
+ αp + U (�r) + 2U0n(�r), (2)

where p is the momentum, m is the mass of the particle, and the
term αp, with α = ξ1

mc
2Mp

in ordinary units, is the leading order

modification in expression (1), with c the speed of light. The term
2U0n(�r) is a mean field generated by the interactions with other
constituents of the bosonic gas, with n(�r) the spatial density of
the cloud [20]. The coupling constant U0 is related to the s-wave
scattering length a through the following expression

U0 = 4π h̄2

m
a. (3)

The potential term

U (�r) =
d∑

i=1

Ai

∣∣∣∣ ri

ai

∣∣∣∣
si

(4)

is the generic 3-dimensional power-law potential, where Ai and ai
are energy and length scales associated with the trap [22]. Ad-
ditionally, ri are the d radial coordinates in the ni -dimensional
subspace of the 3-dimensional space. The sub-dimensions ni sat-
isfy the following expression in three spatial dimensions

d∑
i=1

ni = 3. (5)

If d = 3, n1 = n2 = n3 = 1, then the potential becomes the Carte-
sian trap. If d = 2, n1 = 2 and n2 = 1, then we obtain the cylindri-
cal trap. If d = 1, n1 = 3, then we have the spherical trap. If si →
∞, we have a free gas in a box. The external potential included
in (2) is quite general. Different combinations of these parameters
give different classes of potentials, according to (4). It is notewor-
thy to mention that the use of these generic potentials opens the
possibility to adiabatically cool the system in a reversible way, by
changing the shape of the trap [20]. The analysis of a Bose–Einstein
condensate in the ideal case, weakly interacting, and with a finite
number of particles, trapped in different potentials shows that the
main properties associated with the condensate, and in particu-
lar the condensation temperature, strongly depend on the trapping
potential under consideration [22–35]. Additionally, the character-
istics of the potential (in particular, the parameter that defines the
shape of the potential) have a strong impact on the dependence of
the condensation temperature with the number of particles (or the
associated density).

The main goal of this work is to analyze the shift in the
condensation temperature caused by a deformed dispersion re-
lation in weakly interacting systems and also in systems con-
taining a finite number of particles. We stress that these sys-
tems could be used, in principle, to obtain criteria of viability for
possible signals coming from Planck scale regime, by analyzing
some relevant thermodynamic variables, for instance, the num-
ber of particles, and the frequency associated with the trap, when
|ξ1| � 1.

2. Condensation temperature in the thermodynamic limit;
U0 = 0

Due to an extensive use of some results, let us briefly summa-
rize the results obtained in [15]. From (2), the case U0 = 0 leads to

εp = p2

2m
+ αp + U (�r). (6)

In the semiclassical approximation, the single-particle phase-space
distribution may be written as [20,21]

n(�r, �p) = 1

eβ(εp−μ) − 1
, (7)

where β = 1/κT , κ is the Boltzmann constant, T is the tempera-
ture, and μ is the chemical potential. The number of particles in
the 3-dimensional space obeys the normalization condition [20,21],

N = 1

(2π h̄)3

∫
d3�r d3 �p n(�r, �p), (8)

where

n(�r) =
∫

d3 �p n(�r, �p) (9)

is the spatial density. Using expression (6), and integrating ex-
pression (7) over momentum, with the help of (9), we get the
spatial distribution associated with our modified semi-classical
spectrum (6)

n(�r) = λ−3 g3/2
(
eβ(μeff −U (�r))) − αλ−2

(
m

π h̄

)
g1

(
eβ(μeff −U (�r)))

+ α2λ−1
(

m2

2π h̄2

)
g1/2

(
eβ(μeff −U (�r))) (10)

where λ = ( 2π h̄2

mκT

)1/2
is the de Broglie thermal wavelength, μeff =

μ + mα2/2 is an effective chemical potential, and gν(z) is the so-
called Bose–Einstein function defined by [36]

gν(z) = 1

Γ (ν)

∞∫
0

xν−1 dx

z−1ex − 1
. (11)

If we set α = 0 in Eq. (10) we recover the usual result for the spa-
tial density in the semiclassical approximation [20,21]. By using
the properties of the Bose–Einstein functions [36], assuming that
mα2/2 � κT and integrating the normalization condition (8), we
obtain an expression for the number of particles N to first order
in α

N − N0 = C
d∏

l=1

A
− nl

sl
l anl

l Γ

(
nl

sl
+ 1

)[(
m

2π h̄2

)3/2

gγ (z)(κT )γ

− α

(
m2

2π2h̄3

)
gγ −1/2(z)(κT )γ −1/2

]
, (12)

where

γ = 3

2
+

d∑
l=1

nl

sl
(13)

is the parameter that defines the shape of the potential (4). In (12),
N0 are the particles in the ground state, Γ (y) is the Gamma func-
tion, and C is a constant associated with the potential in question.
In the case of Cartesian traps, and in consequence, for a three di-
mensional harmonic oscillator potential γ = 3 and C = 8. If we
set α = 0 in (12) then, we recover the result given in [22]. In the
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