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Utilizing in-medium vector spectral functions which describe dilepton data in ultra-relativistic heavy-ion
collisions, we conduct a comprehensive evaluation of QCD and Weinberg sum rules at finite temperature.
The starting point is our recent study in vacuum, where the sum rules have been quantitatively satisfied
using phenomenological vector and axial-vector spectral functions which describe hadronic τ -decay data.
In the medium, the temperature dependence of condensates and chiral order parameters is taken from
thermal lattice QCD where available, and otherwise is estimated from a hadron resonance gas. Since little
is known about the in-medium axial-vector spectral function, we model it with a Breit–Wigner ansatz
allowing for smooth temperature variations of its width and mass parameters. Our study thus amounts to
testing the compatibility of the ρ-broadening found in dilepton experiments with (the approach toward)
chiral restoration, and thereby searching for viable in-medium axial-vector spectral functions.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.

1. Introduction

The structure of the QCD ground state is reflected in its ob-
servable hadron spectrum. In vacuum, the formation of quark and
gluon condensates leads to the generation of hadron masses and
the spontaneous breaking of chiral symmetry (SBCS). The latter in-
duces mass splittings of ca. 0.5 GeV for chiral partners in the light-
hadron spectrum, e.g., between π–σ and ρ–a1. In a hot medium,
chiral symmetry is restored across a region around a pseudo-
critical temperature of Tpc � 160 MeV [1,2]. A long-standing ques-
tion is how this restoration manifests itself in the hadron spec-
trum, i.e., what its observable consequences are. Dilepton data
from ultra-relativistic heavy-ion collisions (URHICs) [3–5] are now
providing strong evidence that the ρ resonance “melts” when the
system passes through the pseudo-critical region [6], while exper-
imental access to the in-medium a1 spectral functions (e.g., via
a1 → πγ ) remains elusive. Thus, to test whether the ρ melting in
the vector channel signals chiral restoration, a theoretical evalua-
tion of the in-medium axial-vector spectral function is needed.

A straightforward approach to calculate the in-medium axial-
vector spectral function, by using a chiral Lagrangian paralleling
the treatment of the ρ meson, turns out to be challenging [7].
For example, the widely used scheme of implementing the ρ and
a1 mesons into the pion Lagrangian through a local gauging pro-
cedure causes considerable problems in describing the vacuum
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spectral functions as measured in hadronic τ decays [8,9], which
led some groups to abandon the local gauging procedure [10,11].
In the present work, we adopt a more modest approach to this
problem, by utilizing in-medium sum rules. Specifically, we adopt
the well-known Weinberg sum rules (WSRs) [13,12,14] which re-
late (moments of) the difference between vector and axial-vector
spectral functions to operators signifying SBCS. Using available cal-
culations of the in-medium ρ spectral function together with tem-
perature dependent order parameters as an input, we ask whether
a (not necessarily the) axial-vector spectral function can be found
to satisfy the in-medium sum rules. To tighten our constraints, we
simultaneously employ finite-temperature QCD sum rules (QCD-
SRs) [15,16] in vector and axial-vector channels, which additionally
involve chirally invariant condensates. Related works have been
carried out, e.g., in the low-temperature limit [17,18], for heavy-
quark channels [19], or focusing on chirally odd condensates in
the vector channel only [20].

The present analysis builds on our previous work [21] where
QCD and Weinberg sum rules have been tested in vacuum
with vector and axial-vector spectral functions that accurately fit
hadronic τ -decays. The combination of four WSRs turned out be
a rather sensitive probe of the spectral functions, allowing, e.g.,
to deduce the presence of an excited axial-vector meson, a′

1. This
makes for a promising tool at finite temperature (T ), aided by
an experimentally tested in-medium vector spectral function and
in-medium condensates from lattice QCD (lQCD). In the absence
of reliable microscopic models for the a1 and the excited states,
the price to pay is the a priori unknown in-medium behavior of
these states. However, with guidance from model-independent chi-
ral mixing theorems to constrain the T dependence of the higher
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states, one can still hope for a sensitive test of the in-medium a1
spectral function, and to gain novel insights into (the approach to)
chiral restoration in the I J P = 11± chiral multiplet. This is the
main objective of our work.

The Letter is organized as follows. We recall the in-medium
QCDSRs and WSRs in Section 2 and specify the T dependence of
their “right-hand sides” (condensates) in Section 3. The finite-T
axial-vector spectral functions (“left-hand sides”) are detailed in
Section 4, followed by quantitative sum rule analyses in Section 5.
We conclude in Section 6.

2. Finite temperature sum rules

The basic quantity figuring into WSRs and QCDSRs is the isovec-
tor current–current correlator in the vector (V ) and axial-vector
(A) channels,

Π
μν
V ,A

(
q2) = −i

∫
d4xeixq〈T �JμV ,A(x)�JνV ,A(0)

〉
. (1)

In the quark basis with two light flavors, the currents read �JμV =
q̄�τγ μq and �JμA = q̄�τγ μγ5q, (�τ : isospin Pauli matrices). From here
on, we focus on charge-neutral states (isospin I3 = 0) and drop
isospin indices. In vacuum, the currents can be decomposed into
4D transverse and longitudinal components as

Π
μν
V ,A

(
q2) = Π T

V ,A

(
q2)(−gμν + qμqν

q2

)
+ Π L

V ,A

(
q2)qμqν

q2
. (2)

Vector-current conservation implies Π L
V (q2) = 0, while the pion

pole induces the partial conservation of the axial-vector current
(PCAC),

Π L
A

(
q2) = f 2

πq2δ
(
q2 − m2

π

)
. (3)

Lorentz symmetry breaking at finite T splits the 4D-transverse po-
larization functions into 3D-transverse and 3D-longitudinal parts.
From here on, we focus on vanishing 3-momentum (�q = 0), for
which the 3D components are degenerate. We define pertinent
spectral functions as

ρV ,A = − Im Π T
V ,A

π
, ρ Ā = ρA − Im Π L

A

π
. (4)

The QCDSRs equate a dispersion integral on the left-hand-side
(LHS) to an operator product expansion (OPE) on the right-hand-
side (RHS); for the axial-vector channels they read [22–24]

1

M2

∞∫
0

ds
ρV , Ā(s)

s
e−s/M2

= 1

8π2

(
1 + αs

π

)
+ mq〈q̄q〉

M4
+ 1

24M4

〈
αs

π
G2

μν

〉

− παs

M6

(56,−88)

81

〈
OV ,A

4

〉 + ∑
h

〈Od=4,τ=2
h 〉T

M4

+ 〈Od=6,τ=2
h 〉T

M6
+ 〈Od=6,τ=4

h 〉T

M6
. . . , (5)

where the space-like q2 is traded for the Borel mass M2 by a stan-
dard Borel transform. On the RHS, we include all operators up to
dimension-6, i.e., the common scalar operators already present in
the vacuum (quark, gluon, and 4-quark condensates, 〈q̄q〉, 〈αs

π G2
μν〉,

and 〈OV ,A
4 〉, respectively), as well as non-scalar operators induced

by thermal hadrons (h), organized by dimension (d) and twist (τ ).
The T dependencies are detailed in Section 3.

The WSRs relate moments of the difference between the vec-
tor and axial-vector spectral functions to chiral order parameters.
Their formulation at finite T was first carried out in Ref. [14]. Sub-
tracting the two channels of the finite-T QCDSRs from one another,
Taylor-expanding the Borel exponential, and equating powers of
M2 on each side of the sum rule yields

(WSR1)

∞∫
0

ds
�ρ(s)

s
= f 2

π , (6)

(WSR2)

∞∫
0

ds �ρ(s) = f 2
πm2

π = −2mq〈q̄q〉, (7)

(WSR3)

∞∫
0

ds s�ρ(s) = −2παs
〈
OSB

4

〉
, (8)

where �ρ = ρV − ρA . The chiral breaking 4-quark condensate is
given by the axial-vector ones as

〈
OSB

4

〉 = 16

9

(
7

18

〈
OV

4

〉 + 11

18

〈
OA

4

〉)
. (9)

Since the WSRs only contain chiral order parameters, they are
particularly sensitive to chiral symmetry restoration, whereas the
QCDSRs are channel specific thus providing independent informa-
tion.

3. In-medium condensates

We now turn to the T dependence of each condensate figuring
into the QCDSRs. To leading order in the density of a hadron h in
the heat bath, the in-medium condensate associated with a given
operator O can be approximated by

〈O〉T � 〈O〉0 + dh

∫
d3k

(2π)32Eh

〈
h(�k)

∣∣O∣∣h(�k)
〉
nh(Eh), (10)

where 〈O〉0 is the vacuum value of the operator, 〈h(�k)|O|h(�k)〉 its
hadronic matrix element, E2

h = m2
h + �k2, and dh , mh , and nh are the

hadron’s spin–isospin degeneracy, mass, and thermal distribution
function (Bose (nb) or Fermi (n f )), respectively. Working at zero
baryon chemical potential (μB = 0), we absorb anti-baryons into
the degeneracy factor of baryons. Corrections to Eq. (10) figure via
multi-hadron matrix elements of the operator.

We approximate the medium by a hadron resonance gas (HRG)
including all confirmed states with mass mh � 2 GeV [25]. For the
temperatures of interest here, T � 170 MeV, the HRG is known to
reproduce the equation of state from lQCD quite well [26]. Since
the calculation of the in-medium ρ spectral function is also based
on HRG degrees of freedom, the OPE and spectral function sides of
the sum rules are evaluated in the same basis. For the subsequent
discussion, we define the integrals

Ih
n = dh

∫
d3k

(2π)3 Eh
k2n−2nh(Eh). (11)

Note that mh Ih
1 is the scalar density, �h

s .

3.1. Quark condensate

The HRG correction to the quark condensate is [27,28]

〈q̄q〉T

〈q̄q〉0
= 1 − �π

s

2mπ f 2
π

− �K
s

4mK f 2
K

− �
η
s

6mη f 2
η

− �
η′
s

3mη′ f 2
η′



Download English Version:

https://daneshyari.com/en/article/1851714

Download Persian Version:

https://daneshyari.com/article/1851714

Daneshyari.com

https://daneshyari.com/en/article/1851714
https://daneshyari.com/article/1851714
https://daneshyari.com

