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New analytical solutions for gravity, scalar and vector field localization in Randall-Sundrum (RS) models
are found. A smooth version of the warp factor with an associated function f(z) = exp(3A(z)/2) inside
the walls (|z| < d) is defined, leading to an associated equation and physical constraints on the continuity
and smoothness of the background resulting in a new space of analytical solutions. We solve this
associated equation analytically for the parabolic and Poschl-Teller potentials and analyze the spectrum
of resonances for these fields. By using the boundary conditions we are able to show that, for any of these
solutions, the density probability for finding a massive mode in the membrane has a universal behavior
for small values of mass given by | (0)|> = Bym + Bam® + Bym>log(m) + ---. As a consequence, the
form of the leading order correction, for example, to the Newton’s law is general and does not depend
on the potential used. At the end we also discuss why complications arise when we use the method to

find analytical solutions to the fermion case.
© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3,

1. Introduction

After the seminal work of Randall and Sundrum (RS) [1] several
other results have been developed based on the idea of mem-
branes as topological defects and its implications for brane world
physics [2-7]. In these models one must determine the space of
solutions of a Schrodinger equation with a specific potential which
depends on the warp factor. That is, one needs to solve a Sturm-
Liouville problem to find eigensolutions with eigenvalues. A par-
ticular application of this kind of model is in the study of gravity
trapping in a finite thickness domain wall [8], where a constant
potential in the region near/over the membrane is chosen in or-
der to find analytical solutions. The benefits of such analytical
solutions are worth because allow explicit analysis of the Kaluza-
Klein masses and opens up possibilities for analytical studies of
fermionic modes. These analysis and possibilities can be extended
even more if different potentials for the graviton wave function
modes can be solved analytically.

In this manuscript, we present a new explicit integrable
Schrodinger potentials for the graviton wave function modes pa-
rameterized by the thickness of the wall. The warp factor is chosen
in order to be continuous in the boundary of two regions of the
space-time. These two regions basically describe the interaction
right near/over the membrane location and interactions far from
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the membrane. We find an equation that drives the profile of the
brane. With this we show that the function used in [8] is just a
particular solution of the equation presented here. This reveals a
new space of analytical solutions and, as direct consequences, new
zero modes, Kaluza-Klein modes, new resonance behavior, and so
on. The new analytical solutions are encoded in a Schrédinger-like
differential equation with zero eigenvalue. With this it is possi-
ble to show that, for small values of m, the probability density for
finding a mass mode in the membrane does not depend on the
chosen potential. In this way, the leading order correction of the
four dimensional Newton’s law, for example, has a general expres-
sion that does not depend on the potential used. In the following
lines we discuss how to apply this method to study the physics of
gravitational fields, scalar fields and gauge vector fields in the RS
scenario.

2. The associated equation

To start our reasoning we remember the fact that the mass
spectrum of the gravity field is driven by a Schrédinger like equa-
tion [9]

V(@ + U@ym(2) = m*y (2), (1

where the effective potential depends on the warp factor, A(z), as
below

_é " g ! (5\2
U@)=5A"2)+ A @), (2)
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and the metric in the conformal coordinate is given by ds? =
e2A@ (dx? + dz?). By analyzing the above equation it has been
shown that the zero mode (m = 0) is trapped in the membrane.
However as lim,_, o, U(z) =0, the massive modes are not localized.
An important phenomenological aspect related to this is the ap-
pearance of resonances. This allows for the possibility of unstable
massive modes that could be seen in the membrane. Most of these
studies have been performed numerically by considering smooth
versions of the RS model. These smooth versions can be obtained,
for instance, by considering the membrane as a topological defect
generated by a scalar field. In this scenario the condition imposed
is that for large z the RS warp factor is recovered. These mod-
els have many interesting properties and have been widely studied
over the last decade [2-7].

Another way to get a smooth version of the RS model is by
considering the brane as a thick domain wall [8,10]. In these pa-
pers the potential used depends on one parameter 0 < x < /2
which determines the thickness of the membrane. In order to get
the desired smooth version, A and A’ must be continuous and this
imposes some restrictions on the form of A(z) in the membrane.
The choice of [8] was A(z) = % Incos(v/Vp|z|) and this give the ef-
fective potential U = —V. With this, the resonances of the model
were studied analytically in detail.

In order to obtain a wider class of new exact solutions, we di-
vide the warp factor A(z) in two regions, |z| <d and |z| > d:

2
A@z) = { s Inlfo@)l, 1z <.

3
(g, 121>d, G)

where we defined fo(z) as the associated function. The analytical
solution for |z| > d is already known [8,10], then we focus in ana-
lytical solutions for |z| < d. With Egs. (2) and (3) we get that fo(2)
satisfies the associated equation

—fo @ +U(2) fo(2) =0, (4)

this is exactly the effective Schrédinger equation (1) for m? =0. In
order to implement the boundary conditions, we restrict to even
functions fo(z) = fo(—2z) = go(z) with U(z) = U(—2) in (4), guar-
antying that the boundary conditions are satisfied in both edges of
the brane, z=d and z = —d. The condition A(0) = 0 implies that
g0(0) = 1. Since go(z) is an even function we also have A’(0) = 0.
This conditions fix completely the solution of (4). With the above
considerations and by imposing continuity of A(z) and A’(z) at
z = =+d we obtain

2

380(@ =—go(@)' 7, (5)
1

B=—-d+ PNCICER (6)

with the conditions g{(d) <0 and go(z) positive and limited in
|z| <d. In the last section it will become clear why we have writ-
ten 5/3=1+42/3.

3. Analytical solutions

As a first example, let us consider a constant potential —|Vp| in
the region |z| < d [8]. We know that the solution for the Schrédin-
ger equation (1) is a linear combination of cos(y/m? 4+ |Vgl|z)
and sin(y/m2 + |Vg|2). The even solution for m = 0 that satisfies
20(0) =1 is cos(y/[Volz). The conditions gg(d) <0 and go(z) > 0
implies that 0 < /[Vg|d < /2. This is the solution introduced
in [8,10]. As a straightforward application of the method devel-
oped here lets examine the harmonic oscillator with Schrédinger
equation

— Y (2) + 22U (2) = m* Y (2). (7)

The above equation can be cast in the form of a Kummer equation
[11], by writing ¥m(z) = e * /2wy (z) and next using the transfor-
mation u = z2, we obtain

uF"(u)+ (b —u)F' (u) —aF(u) =0, (8)

with b = 1/2 and a = (1 — m?)/4. Then, solutions of (7) are
linear combinations of gm(z) = e~%/2F;(a; 1:7%) and hp(2) =
ze~Z2Fy(a+ 1:3:2%), where Fy(a; b; 2) is the Kummer confluent
hypergeometric function. From now on we will use for the even
(odd) solution in |z| < d the notation gn(z) (hn(2)). The even so-
lution for m =0 with go(0) =1 is go(2) = e*zz/zﬂ(%; 1:2%).

In fact, we can find a large new class of solutions simply con-
sidering U(z) = az?> + b, with a > 0. Using the above-mentioned
steps we find the pair of solutions

2
_evapp (b _m 11 2) 9
gm(2)=e 1<4ﬁ 4ﬁ+4’2’ﬁz , (9)
b m?> 3 3
h — ze~VaZ /2| (——— == 2), 10
m(2) = ze 217 4ﬁ+42ﬁz (10)

and W(g,h)(2) =1, where W (f1, f2)(0) = f1(*) f3(x) — f{ (%) f2(x)
is the Wronskian of f1, f,. It is worthwhile to mention that the
Wronskian is constant for Schrédinger-like equations. The even so-
lution satisfies go(0) =1 and the value of the constants a, b and d
are related in order to give g;(d) < 0 and go(z) > 0. As an example,
for b= -5 and a =1, go(z) is positive defined for |z| < 0.707107
and d = 0.243928.

The method described here can be applied to many other cases
known in physics. One possibility is the problem for a particle in a
box subject to a constant field. This is described by a linear poten-
tial U(z) = az giving rise to the Airy functions with solutions Ai(z)
and Bi(z). However, this potential do not satisfies the condition of
being even. Another class of analytical solutions can be found by
considering exponential potentials. From these the only even one
is the Poschl-Teller potential, where the Schrodinger-like equation
is

Y (2) + (m* + a®b(b + 1) sech? (az)) Ym(z) = 0. (11)

Rewriting v (z) = w(z)/ coshb(az) and next using the transforma-
tion u = — sinh?(az), we can write (11) as a hypergeometric differ-
ential equation

u(l—wF" W) + (y — (@+ B+ Du)F'(u) —afFu) =0,

where ¥y =1/2, o« = (—=b + im/a)/2 and B = —(b + im/a)/2.
Therefore the linearly independent solutions of (11) are gn(z) =
F(o,B;1/2; —sinhz(az))/coshb(az) and hpy(z) = sinh(az)F(ox +
1/2,8+1/2;3/2; —sinhz(az))/coshb(az) with W(gm, hm)(z) = a
and go(0) = gn(0) =1.

After fixing the background with the above method we turn
our attention to the gravity resonances. The interesting fact about
this background is that we automatically have exact solutions to
Eq. (1) just by not fixing m = 0. With this we get an analytical
expression for our resonances. As we are interested in resonances
we must consider a plane wave coming from —oo. This plane wave
will collide with the membrane and will generate a reflected and
a transmitted wave. Therefore, for z < —d we must have a linear
combination of waves moving to the left and to the right. For z > d
we must have only one wave moving to the right. In order to an-
alyze the resonances we fix the coefficient of the incoming wave
equal to one. In this way, the Schrédinger-like equation (1) has the
solution
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