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This Letter is based on the κ-Dirac equation, derived from the κ-Poincaré–Hopf algebra. It is shown that
the κ-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries.
Introducing the Dirac oscillator prescription, p → p − imωβr, in the κ-Dirac equation, one obtains the
κ-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed
radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation
parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε = 0, one recovers
the energy eigenvalues and eigenfunctions of the Dirac oscillator.
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1. Introduction

In 1989, in a seminal paper by Moshinsky and Szczepaniak [1]
the basic idea of a relativistic quantum mechanical oscillator, called
Dirac oscillator, was proposed. Such oscillator behaves as an har-
monic oscillator with a strong spin-orbit coupling in the non-
relativistic limit. Since the time of its proposal it has been the
object of considerable attention in various branches of theoretical
physics. For instance, it appears in mathematical physics [2–11],
nuclear physics [12–14], quantum optics [15–18], supersymme-
try [19–21], and noncommutativity [22–25]. Recently, the first
experimental realization of the Dirac oscillator was realized by
J.A. Franco-Villafañe et al. [26], which should draw even more
attention for such system. Moreover, C. Quibay et al. proposed
that the Dirac oscillator can describe some electronic properties
of monolayer and bylayer graphene [27] and show the existence of
a quantum phase transition in this system [28].

The Dirac oscillator has also been discussed in connection with
the theory of quantum deformations [29]. Some of these deforma-
tions are based on the κ-deformed Poincaré–Hopf algebra, with
κ being a masslike fundamental deformation parameter, intro-
duced in Refs. [30,31] and further discussed in Refs. [32–35]. The
κ-deformed algebra is defined by the following commutation rela-
tions:

[pν, pμ] = 0, (1a)
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[Mi, pμ] = (1 − δ0μ)iεi jk pk, (1b)

[Li, pμ] = i[pi]δ0μ
[
δi jε

−1 sinh(εp0)
]1−δ0μ

, (1c)

[Mi, M j] = iεi jk Mk, [Mi, L j] = iεi jk Lk, (1d)

[Li, L j] = −iεi jk

[
Mk cosh(εp0) − ε2

4
pk pl Ml

]
, (1e)

where ε is defined by

ε = κ−1 = lim
R→∞(R ln q), (2)

with R being the de Sitter curvature, q is a real deformation pa-
rameter, and pμ = (p0,p) is the κ-deformed generator for energy
and momenta. Also, the Mi , Li represent the spatial rotations and
deformed boosts generators, respectively. The coalgebra and an-
tipode for the κ-deformed Poincaré–Hopf algebra was established
in Ref. [36].

Several investigations have been developed in the latest years in
the context of this theoretical framework on space-like κ-deformed
Minkowski spacetime. The interest in this issue also appears in
field theories [37–40], quantum electrodynamics [41–43], realiza-
tions in terms of commutative coordinates and derivatives [44–47],
relativistic quantum systems [48–52], doubly special relativity [53],
noncommutative black holes [54] and the construction of scalar
theory [55].

The aim of this Letter is to suitably describe the κ-Dirac oscil-
lator making use of the κ-Poincaré–Hopf algebra, tracing a com-
parison with the results of Ref. [29], where it was argued that
usual approach for introducing the Dirac oscillator, p → p− imωβr,
in the κ-Dirac equation [32,33], has not led to the Dirac oscillator
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spectrum in the limit ε → 0. This result, however, contradicts the
well-known fact that the κ-Dirac equation recovers the standard
Dirac equation in this limit. In this context, this Letter reassessed
the κ-Dirac oscillator problem yielding a modified oscillator spec-
trum that indeed regains the Dirac oscillator behavior in the limit
ε → 0.

The plan of our Letter is the following. In Section 2 we intro-
duce the κ-Dirac analyzing its behavior under C , P , T (discrete)
symmetries. In Section 3 the oscillator prescription is implemented
in order to study the physical implications of the κ-deformation in
the Dirac oscillator problem. Using a decomposition in terms of
spin angular functions, we write the relevant radial equation to
study the dynamics of the system. Section 4 is devoted to the cal-
culation the energy eigenvalues and eigenfunctions of the κ-Dirac
oscillator and to the discussion of the results. A brief conclusion in
outlined in Section 5.

2. κ-Dirac equation and discrete symmetries

In this section, we present κ-Dirac equation, invariant under
the κ-Poincaré quantum algebra [32], considering O (ε) [33]:{
(γ0 p0 − γi pi) + ε

2

[
γ0

(
p2

0 − pi pi
) − mp0

]}
ψ = mψ, (3)

which recovers the standard Dirac equation in the limit ε → 0.
An initial discussion refers to the behavior of this deformed

equation under C , P , T (discrete) symmetries. Concerning the par-
ity operator (P), in the context of the Dirac equation, P = iγ 0,
with Pγ μP−1 = γμ and ψP = Pψ being the parity-transformed
spinor. Applying P on the Dirac deformed equation, we attain{
(γ0 p0 − γi pi) + ε

2

[
γ0

(
p2

0 − pi pi
) − mp0

]}
ψP = mψP , (4)

concluding that it is invariant under P action.
We can now verify that this equation is not invariant under

charge conjugation (C) and time reversal (T ). As for the C op-
eration, the charge-conjugated spinor is ψC = UCψ∗ = Cγ 0ψ∗ ,
with C = iγ 2γ 0 being the charge conjugation operator, and
UCγ μ∗U−1

C = −γ μ . On the other hand, the time reversal opera-
tor is, T = iγ 1γ 3, so that ψT (x, t′) = T ψ∗(x, t′), and T γ μ∗T −1 =
(γ 0,−γ i). Applying UC and T on the complex conjugate of
Eq. (3), we achieve:{
(γ0 p0 − γi pi) + ε

2

[−γ0
(

p2
0 − pi pi

) − mp0
]}

ψC = mψC, (5){
(γ0 p0 − γi pi) + ε

2

[
(γ0)

(
p2

0 − pi pi
) + mp0

]}
ψT = mψT . (6)

Theses equations differ from Eq. (3), revealing that the C and T
are not symmetries of this system. As a consequence, particle and
anti-particle eigenenergies should become different. Further, note
that under CT or CPT operations the original equation is modi-
fied as{
(γ0 p0 − γi pi) − ε

2

[
γ0

(
p2

0 − pi pi
) − mp0

]}
ψ ′ = mψ ′, (7)

where ψ ′ = ψCT or ψ ′ = ψCPT , showing that this equation is not
invariant under CT or CPT operations, once the parameter ε is
always positive.

3. κ-Dirac oscillator equation

Now, we derive the equation that governs the dynamics of the
Dirac oscillator in the context of Eq. (3). The Dirac oscillator stems
from the prescription [1]

p0 → p0 = H0, (8a)

p → p − imωβr, (8b)

where r is the position vector, m is the mass of particle and ω the
frequency of the oscillator. The κ-Dirac oscillator can be obtained
by substituting Eq. (8) into Eq. (3). The result is

Hψ = Eψ, (9)

with

H = H0 − ε

2

[
p2

0 − (p − imωβr)(p − imωβr) − βmp0
]
, (10)

where H0 represents the undeformed part of the Dirac operator

H0 = α · (p − imωβr) + βm. (11)

At this point it is important trace a comparison with the results
of Ref. [29], in which it is argued that the prescription of Eq. (8),
yielding the κ-deformed Hamiltonian of Eq. (10), does not lead
to an oscillator-like spectrum even when ε → 0. This result, how-
ever, is not correct, as properly shown in Section 4. Furthermore,
another deformed wave equation is introduced without any kind
of proof (see Eq. (15) in [29]). Here, instead of postulating a de-
formed wave equation, we follow a pragmatic approach obtaining
the κ-Dirac oscillator equation (10) from basic principles.

In the four-dimensional representation, the matrices γ and α
are given by

β =
(

I 0
0 −I

)
, γ = βα =

(
0 σ

−σ 0

)
, α =

(
0 σ
σ 0

)
,

(12)

and obey the anticommutation relations and the square identity,

{αi,α j} = 0, i �= j,

{αi, β} = 0,

α2
i = β2 = I.

In the representation (12), ψ may be written as a bispinor
ψ = (ψ1,ψ2)

T in terms of two-component spinors ψ1 and ψ2.
Thus, Eq. (9) leads to(

1 + mε

2

)(
σ · π+)

ψ2

= (E − m)ψ1 + ε
[
imω(r · p) + mω(σ · L) + m2ω2r2]ψ1, (13)

(
1 − mε

2

)(
σ · π−)

ψ1

= (E + m)ψ2 − ε
[
imω(r · p) + mω(σ · L) − m2ω2r2]ψ2, (14)

where

π± = p ± imωr. (15)

Since we are interested in studying the κ-Dirac oscillator in a
three-dimensional spacetime, Eqs. (13) and (14) above may be
solved in spherical coordinates. First, using the property

σ · p = (σ · r̂)
(

r̂ · p + i
σ · L

r

)
, (16)

with σ · r = rσ · r̂, we rewrite the quantity σ · π± as

σ · π± = (σ · r̂)
(

r̂ · p + i
K̂ − 1

r
± imωr

)
, (17)
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