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The goal of this Letter is to calculate bound, resonant and scattering states in the coupled-channel
formalism without relying on the boundary conditions at large distances. The coupled-channel solution
is expanded in eigenchannel bases i.e. in eigenfunctions of diagonal Hamiltonians. Each eigenchannel
basis may include discrete and discretized continuum (real or complex energy) single particle states.
The coupled-channel solutions are computed through diagonalization in these bases. The method is
applied to a few two-channel problems. The exact bound spectrum of the Poeschl-Teller potential is well
described by using a basis of real energy continuum states. For deuteron described by Reid potential, the
experimental energy and the S and D contents of the wave function are reproduced in the asymptotic
limit of the cutoff energy. For the Noro-Taylor potential resonant state energy is well reproduced by
using the complex energy Berggren basis. It is found that the expansion of the coupled-channel wave
function in these eigenchannel bases requires less computational efforts than the use of any other basis.
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The solutions are stable and converge as the cutoff energy increases.
© 2014 The Author. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.

1. Introduction

Considerable amount of effort is devoted all around the world
to studying the properties of unstable nuclei [1]. Because of this,
new theoretical approaches, which takes into account the contin-
uum explicitly, is called for revealing their properties. The coupled-
channel method is a very powerful formalism for studying the
structure of both strongly-bound nuclei [2,3] and loosely-bound
nuclei [4]. Here we propose a way to calculate the coupled-channel
solutions in which all bound and continuum (resonant and non-
resonant continuum) states are treated on the equal footing.

Complex eigenenergies, i.e. Gamow [5] or Siegert [6] states
were calculated using the Green’s function approach in momentum
space in Refs. [7,8] for coupled channel problems. Gamow states
for realistic deformed potentials were calculated first in Ref. [9] by
solving the logarithmic derivative of the coupled equations with
outgoing boundary condition. In Refs. [10] and [11] the coupled-
channel Schrédinger equation with outgoing wave boundary con-
dition was used to study the proton decay states in a rare-earth
nucleus.

The complex scaling method has been successfully combined
with the coupled-equation formalism to calculate resonances
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[12-15]. The extension of the Gamow Shell Model [16,17] to reac-
tion problems in the framework of coupled-channel formalism was
recently implemented in Ref. [18], where the low-lying states of
7Li were calculated. The result of the direct integration of coupled
equations was compared with that of the Berggren [19] expansion
for the calculation of bound states of dipolar molecules in Ref. [20].
A full complex energy representation was used in Ref. [21] for the
calculation of the Isobaric Analog State by coupled Lane equations.
The present Letter extends the use of the continuum bases to the
inelastic processes in coupled-equation systems and to the calcu-
lation of scattering states.

The method presented in this Letter allows the calculation of
bound, resonances and scattering states in coupled systems on the
same footing. All these states may be found by a single diagonal-
ization simultaneously. Each channel wave function is expanded
in an optimized basis set defined by the eigensolution of the cor-
responding uncoupled Schrodinger equation, that is the meaning
of eigenchannel bases. Since this method prescinds from explicit
boundary conditions, it might be useful for dealing with Coulomb
breakup problems that appear, for instance, in electron-impact ion-
ization [22] or in breakup reactions important in astrophysics [23,
24] or in studying the three-body Coulomb breakup reaction of
1pj [25].

In Section 2 we develop the method in which the coupled
Schrédinger equations are expanded in the continuum bases of un-
coupled channels. The first application of the method is done in
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Section 3. It solves the problem of the exactly solvable two-channel
Poeschl-Teller potential. This works as a test case. It shows the re-
liability of the method and it shows the relative importance of the
continuum for the deep and for the loosely bound states. In Sec-
tion 4, the method is applied to the bound and scattering states of
the deuteron. The last application in Section 5 is devoted to the si-
multaneous calculation of bound and resonant states. The outline
for the next applications and some remarks are given in the last
Section 6.

2. Formalism

Let us denote by H the Hamiltonian which describes a collision
between two nuclei being in bound states (a, A). We split H into
two parts: (1) the Hamiltonian H}, that is left when the two initial
fragments are far away from each other and (2) V = Ziea,jeA Vij
which includes the projectile (a)-target (A) interaction. Changing
in HJ, to relative coordinates in each fragments and then chang-
ing to the relative coordinates between the fragments [26], we end
up with H), = Hy + T (we have set the centroid kinetic energy to

zero), where T = —%Vrz is the relative kinetic energy, w is the
projectile-target reduced mass, and Hy = Hq + Ha, where H, and
H, are the intrinsic Hamiltonians of the projectile and target, re-
spectively. Then, the total Hamiltonian reads H = Hy, + T + V. The
residual interaction V = V4 4 Voq is split into a diagonal part V4
and an off-diagonal one Vo4 [27]. The eigenfunction v =y of H is
expanded into different channels using the channel basis functions

@OI,UM defined as
oy M0, A) = [V, ¢, 1, ()] g (1)

where o = {(Jo)j. Ja} Y)'¢.0) = Yi(P)bs, @ljm, Hadjom, =
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Then,
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Substituting the channel expansion (2) into the Schrodinger

equation Hy =y (r,a, A) = Eyrj=m(r,a, A) and projecting into a
certain channel &, we get (omitting the index J™ M)

(o +ho = E)ua () + Y Vo (Nitg (1) =0 (3)

o' #o

where we have separated the diagonal matrix elements Vy, and
we have defined the single particle channel Hamiltonians,

W2 d?2 R gy +1)

2udrz  2u 12 +
with Vyg = (@ |V|Py )iqea, Where the suffix indexes mean inte-
gration over the angular coordinate 7 of the relative motion and
the internal coordinates of the projectile a and target A nuclei, re-
spectively. Notice that the structures of Egs. (3) and (4) are the
same as that of Eq. (25) of Ref. [27].

Although, in principle any complete set of states will allow the
computation of the interaction matrix elements, in practice, a ju-
dicious choice of the basis states will minimize the number of
matrix elements to be calculated and reduce the computation time
needed. Here we use the diagonal part V4 of the residual interac-
tion V = V44 Voq to generate the basis. Notice that the basis does
not correspond to the one generated without residual interaction
V =0.

In the next step, we expand the wave functions uy(r) in each
channel in the basis generated by its own channel Hamiltonian hy

hy = Vaa (4)

(0) 0, (0)

hauoz,n(r) = &g nUg.n() (5)
Uy ()= Y Cor ity (1) (6)
n/

where the summation includes integration over the continuum
part of the spectrum of hy.
Replacing the expansion of uy(r) (Eq. (6)) in Eq. (3) and pro-
jecting over uf)g)n (r) we get
N Mot/
O — E)Sgard 1= 8ga)V =0
[(8a + Ean ) aa’ S + ( aa’) an,a’n’]ca’,n’ =
o'=1n"=1

(7)

where N denotes the number of channels and M, is the number
of single particle basis states for the channel «.

The coupled equations problem in Eq. (7) can be transformed
to an eigenvalue problem with a sparse symmetric matrix of di-
mension M = My + --- + My by defining the index i = {«,n} of
the following order i = {(«1, 1), (@1, 2),..., (@1, M1), (a2, 1),...,
(a2, M3), ..., (an,1),..., (N, My)}. The matrix is diagonal in
each channel block « of dimension M,. The diagonal elements
in each channel block « are given by &, + 82231 — E, with n=
{1,2,...,My}. The matrix elements between different channels
contain only the interaction V; given by

0 0
Van,an' = / dr u((x,)n N Vaar (r)u((x’),n’ )

Using the basis generated by the diagonal part of the channel
interaction one can save the calculation of Mgayeq = Zgﬂ w
interaction matrix elements. The number of these matrix elements
increases rapidly as the number of open channels N and the di-
mension of the basis M, increase.

There are two advantages of using a basis expansion method
instead of using the asymptotic boundary conditions. The matrix
diagonalization does not diverge even if the coupling terms are
large. This might happen in the direct numerical integration [3] of
the coupled equations. The matrix diagonalization does not face
any instability of the numerical integration of the coupled equa-
tions. The disadvantage of using a basis expansion is that one
has to deal with the completeness problem of the basis. A diffi-
culty of using the basis expansion is that one needs an efficient
and accurate method to solve the single particle Schrédinger equa-
tion, that is, to find real and complex poles as well as the real
and complex energy scattering states. The real and complex en-
ergy scattering states were calculated by using a piecewise per-
turbation method [28]. The code implements the so called Ixaru’s
method [29]. The real and complex energy poles were also calcu-
lated by using a modified version of the program [28]. This version
has a higher precision than the GAMOW code [30], which however
is more flexible.

3. Application to the Poeschl-Teller potential: bound state
calculation using bases composed of bound states and real
energy continuum

In this section we compare the exact solution of the two-
channel Poeschl-Teller potential with the numerical solution using
the same eigenchannel bases for both channels. The bases are com-
posed of bound and real energy scattering states.

Let us consider the Schrodinger equations with two channels
and with i=2u=1,11 =, =0, & =&, =0 and V(1) given by
Ixaru [31]

Va(r)

Voa(r) (8)

Vo (1) = ( V““)

Va(r)
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