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We argue that in the Copenhagen (“spaghetti”) picture of the QCD vacuum the chromomagnetic
flux tubes exhibit chromoelectric superconductivity. We show that the superconducting chromoelectric
currents in the tubes may be induced by the topological charge density.
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The nonperturbative structure of the ground state of QCD vac-
uum is one of the most interesting unsolved problems in quantum
field theory. At zero temperature the ground state exhibits a mass
gap, breaks chiral symmetry and supports confinement of color
sources, quarks and gluons. The confining properties of the QCD
ground state were intensively studied last decades resulting in a
number of phenomenological approaches to this problem.

One of the popular approaches is the “spaghetti vacuum” pic-
ture (the Copenhagen vacuum): the QCD vacuum is considered to
be populated by evolving vortex tubes which carry a chromomag-
netic flux [1–5]. An isolated color charge – for example, a quark
– scatters off the vortices and develops an infinitely large free en-
ergy. As a result, the quarks may appear in the vacuum only in
a form of colorless (hadronic) states bounded by a chromoelectric
string [2].

The standard mechanism of formation of the chromomagnetic
vortices is as follows. The perturbative vacuum of QCD – which
is paramagnetic due to the asymptotic freedom – has an unstable
mode towards formation of a chromomagnetic field [6]. However,
in the background of a homogeneous chromomagnetic field the
gluon part of the vacuum energy develops an imaginary part to
large chromomagnetic moment of the gluon [1]. This implies that
the homogeneous chromomagnetic field is also unstable towards
squeezing of the chromomagnetic field into separate parallel flux
tubes (vortices) [4], similarly to the Abrikosov vortex lattice in a
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mixed state of an ordinary type-II superconductor in an external
magnetic field [7]. Finally, due to global rotational and Lorentz
invariance of the QCD vacuum, the chromomagnetic field has lo-
cally a domain-like structure [3]: the field has different orientation
in different domains. Due to the fact that the vortices follow the
orientation of the chromomagnetic field, the vortex lines form an
intertwining entangled structure, hence the name “spaghetti”.

Thus, the Copenhagen confining mechanism has a tight rela-
tion to ideas from ordinary superconductivity such as condensation
and flux tube (vortex) formation. However, in addition to the men-
tioned features there exists another, primary phenomenon which is
associated with ordinary superconductivity which is the supercon-
ductivity itself (i.e., the perfect conductivity of an electric current).
In this Letter we would like to show that the Copenhagen vacuum
is not just “analogous” to an ordinary superconductivity: in this
picture the Copenhagen vacuum is a chromoelectric superconduc-
tor from the point of view of the transport properties.

Why the Copenhagen vacuum should be a chromoelectric su-
perconductor? A simple answer is because in this picture the
chromomagnetic tubes are formed due to the gluon condensate
while the gluons are carrying a color charge. The condensation of
the color charges should lead, naively, to the (chromo)supercon-
ducting phenomenon. However, our considerations may contain a
caveat: in the ordinary superconductivity the Cooper-pair conden-
sate has a macroscopic order over large distances and this property
is the core reason why the electric current may be transported by
the uniform condensate without dissipation. On the contrary, the
QCD vacuum in the Copenhagen picture has a domain-like struc-
ture with each domain possessing its own orientation (both in
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color and coordinate spaces) of the gluon condensate so that the
long-range order is absent. Nevertheless, we argue below that this
property is not an obstacle due to the long-range order which is
maintained along the chromomagnetic vortices. We arrive to the
picture that in the spaghetti vacuum the chromoelectric current
should be able to stream without dissipation along the chromo-
magnetic tubes. Basically, the chromomagnetic tubes work like
specific, hollow wires which are able to carry the chromoelectric
current without resistance.

As one of the possible consequences of the color superconduc-
tivity one can expect probe quarks to propagate along the flux
tubes over arbitrary distances, so that the tubes can be considered
as “fermionic guides” [8–11]. From the phenomenological perspec-
tive the long-range propagation of quarks may lead to the phe-
nomenon of chiral superfluidity of the quark–gluon plasma [12].

The Yang–Mills Lagrangian is

L = −1

4
F a
μν F aμν, (1)

where F a
μν = ∂μ Aa

ν − ∂ν Aa
μ + gεabc Ab

μ Ac
ν is the strength tensor of

the SU(2) gluon field Aa
μ .

For simplicity, we consider the SU(2) gauge field instead of
more phenomenologically relevant SU(3) fields since the latter so-
lutions may be obtained – following the general construction of
Ambjorn–Olesen [4] – by an imbedding the SU(2) solutions into
the SU(3) color group.

The corresponding equations of motion are as follows

∂μF a
μν + gεabc AbμF c

μν = 0. (2)

Following Ambjorn and Olesen [4] we consider the state of
the Yang–Mills theory in a uniform chromomagnetic field directed
along the third spatial axis. In the color space the chromomagnetic
field is assumed to be directed in the third axis as well:

F a,ext
μν ∼ δa,3(δμ1δν2 − δμ2δν1). (3)

In oder to obtain such a configuration, one can add a homogeneous
Abelian magnetic flux in third direction in color space [4]:

A3
1 = −x1

B

2
, A3

2 = x2
B

2
. (4)

For definiteness we take B > 0.
The ground state solution to the equations of motion (2) has

certain remarkable properties. The solution is a function of the
transverse – with respect to the spatial direction of the external
chromomagnetic field (3) – coordinates x⊥ = (x1, x2) and it is in-
dependent on the longitudinal coordinates x‖ = (x0, x3).

The longitudinal components of the vector fields are vanishing
in the ground state, Aa

0 = Aa
3 = 0, so that the equations of mo-

tion (2) involve only the transversal components Aa
i with i = 1,2.

The latter can conveniently be rewritten in the complex notations
by introducing the following combinations for all vector fields Oi
with i = 1,2: O = O1 + iO2 and Ō = O1 − iO2. These relations
imply Ō = O∗ for all real vector fields Oi . Defining the complex
coordinate z = x1 + ix2 and complex derivative ∂ = ∂1 + i∂2, we
find the non-canonical relations ∂̄z = ∂ z̄ = 2 and ∂z = ∂̄ z̄ = 0.

The off-diagonal gluonic fields A1,2
μ can be combined into two

complex-valued fields:

A±
μ = 1√

2

(
A1

μ ∓ i A2
μ

)
. (5)

These combinations are not independent, A±
μ ≡ (A∓

μ)†, so that be-
low we will work with the A−

μ field only.
The ground state can be described by two complex functions

A = A(x⊥) and A3 = A3(x⊥) with

A ≡ A− = A−
1 + i A−

2 , (6)

A3 = A3
1 + i A3

2, (7)

and their complex conjugates. The combinations (6) and (7) cor-
respond to, respectively, the off-diagonal and diagonal compo-
nents of the Aa

i fields. The color direction is defined by the
background chromomagnetic field. The alternative (barred) com-
bination of the off-diagonal A fields is zero in the ground state,
Ā− = A−

1 − i A−
2 = 0. Notice that A+ ≡ ( Ā−)∗ = 0 and Ā+ = (A−)∗ .

The constraints (3) for a = 1,2 can now be rewritten as a single
complex equation:

∂̄ A = − g B

2
z̄ A, (8)

which is well known from the work of Abrikosov [7] to possess
finite-energy solutions with a lattice symmetry.

The solution for this equation minimizing the remaining terms
contributing to the energy integrated over the transversal plane

E⊥ =
∫

1

2

(
F 3

12

)2 =
∫

1

2

(
B − g

2
|A|2

)2

, (9)

was constructed in terms of θ -functions. In the background of the
strong chromomagnetic field the vacuum structure resembles the
Abrikosov lattice in the mixed phase of the type-II superconduc-
tors [7]. In analogy with the lattice of the Abrikosov vortices in
a superconductor, the chromomagnetic field in Yang–Mills theory
organizes itself in similar periodic structures [4].

The ground state solution by Ambjorn and Olesen is given [up
to a gauge factor due to a different parametrization of magnetic
field (4)] by the following formula [4]:

A(x1, x2) = φ0eig Bx2
x1+ix2

2 θ3

(
(x1 + ix2)ν

LB
, e

2iπ
3

)
, (10)

ν =
4
√

3√
2

, LB =
√

2π

g B
, (11)

where θ3 is the third Jacobi theta function, and the overall factor
φ0 ≈ 2.9

√
B/g is determined numerically by a minimization of the

energy functional (9).
The global energy minimum is reached for the equilateral trian-

gular lattice (which is also called the hexagonal lattice) solutions
of Eq. (8). Another local minimum is found for a square lattice.

The geometrical pattern of the lattice structure in the Yang–
Mills theory is determined by the Abrikosov ratio,

βA = Area⊥
(∫

dx2⊥|A|4
)/(∫

dx2⊥|A|2
)2

, (12)

which can be expressed in terms of generalized θ -functions [4].
The global minimum of the energy functional (9) is

E⊥,min = Area⊥
B2

2

(
1 − 1

βA

)
, (13)

where for the hexagonal structure the Abrikosov ratio is βA ≈ 1.16
similarly to an ordinary type-II superconductor [13].

It is worth noting that even in models where the forth-order
interaction terms are more complicated and, as a consequence, an-
other definition of βA is needed, one still finds that the global
energy minimum still corresponds to the hexagonal lattice pat-
tern [13,14,16,17].

The gluon field (10) is shown in Fig. 1. The chromomagnetic
vortices are arranged in the hexagonal structure. In the center
of each vortex the gluon field (6) is vanishing and the phase of
this field winds by the angle 2π , similarly to the usual Abrikosov
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