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The multiquark confining potential is proportional to the total distance of the fundamental strings linking
the quarks and antiquarks. We address the computation of the total string distance and of the Fermat
points where the different strings meet. For a meson the distance is trivially the quark–antiquark distance.
For a baryon the problem was solved geometrically from the onset by Fermat and by Torricelli, it can be
determined just with a rule and a compass, and we briefly review it. However we also show that for
tetraquarks, pentaquarks, hexaquarks, etc., the geometrical solution is much more complicated. Here we
provide an iterative method, converging fast to the correct Fermat points and the total distances, relevant
for the multiquark potentials.

© 2009 Published by Elsevier B.V.

1. Introduction

Fermat proposed to Torricelli the problem of finding the point
in a triangle minimizing the sum of the distances to the three re-
spective vertices. This first Fermat point or Torricelli point [1–6],
is the isogonic point, since in a sufficiently acute triangle the an-
gle formed by the segments connecting any two vertices with it is
120 degrees.

Lately this problem became relevant for quark physics because
the multiquark confining potential is proportional to the total dis-
tance of the fundamental strings linking the quarks and antiquarks.
Recently the interest on multiquarks and other exotic hadrons has
been increasing in the literature. The most recent focus is in plau-
sible tetraquarks with some heavy quarks in the family of X , Y
and Z mesons [7–26]. We may expect the experimental collabo-
rations BESII/BEPC, PANDA, GLUEX and JPARK, to find evidence for
new multiquarks in the future be discovered.

Here we address the case where we have a single multiquark
linked by topologically connected confining strings, and not many
free or molecular mesons and baryons, where the confining poten-
tial would be different. The three-body star-like potential has al-
ready been used long ago in baryons [26], however for many years
there was a debate in the lattice QCD community on the two-body
versus three body nature of the confining potential for baryons. Re-
cently, the study of flux tubes in lattice QCD for baryons (triquarks)
by Takahashi et al. [27] confirmed the three-body star-like confin-
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ing potential. Very recently, the Wilson loop technique was applied
to tetraquarks by Okiharu et al. and Alexandrou et al. [28,29] and
to pentaquarks by Okiharu et al. [30], showing that the confining
potential is provided by a fundamental string linking all the quarks
and antiquarks. Cardoso et al. also confirmed this result with the
Wilson loops for hybrids [31] and for three gluon glueballs [32].
Thus we assume that the confining component of the multiquark
potential is

Vc(ri) = σ
∑
i,a

ria,

ria = ri − ra, (1)

where σ is the string tension, ri is the position of the quark or an-
tiquark Q i , ra is the position of the Fermat point Fa , and we use
respectively Arab digits i = 1,2,3, . . . for the quarks (antiquarks)
and Roman digits a = I, II, III, . . . for the Fermat points. Thus the
Fermat problem of finding the paths minimizing the total distance
is equivalent to the physics problem of computing the multiquark
potential. Notice that there are already some proposed experimen-
tal signals of tetraquarks, and the next generation of Hadronic
Detectors may eventually observe multiquark hadrons.

The geometries of the strings of the first five multiquarks are
depicted in Fig. 1. Eq. (1) and Fig. 1 extend the definition of the
Fermat point of a triangle to the Fermat point of polygons in three
dimensions with more points. With the present definition, where
confinement is produced by fundamental strings, the strings meet
in internal three-string vertices. The number of quarks can always
be increased replacing a quark (antiquark) by a Fermat point and a
diquark (di-antiquark). Thus the number of quarks (and antiquarks)
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Fig. 1. The geometries of the string sections linking the first five multiquarks. Notice
that the number of Fermat points Fa is N −2 where N is the number of quarks and
antiquarks Q i in the multiquark.

minus the number of Fermat points is a constant. Since in the me-
son and baryon this constant is 2, the number of Fermat points
is N − 2 where N is the number of quarks and antiquarks. More-
over in Eq. (1) we are only summing over distances between points
linked by strings.

In general, the Fermat points depend on the choice of the string
topology. In the case of the baryon there is only one way to attach
the strings and thus the location of the only Fermat point do not
depend on the location of the strings. In the case of the tetraquark,
there is still only one possible way to attach the strings, but two
different mesonic strings are also possible, corresponding to two
different ways of forming mesons. For a larger number of quarks,
say for the pentaquark, the hexaquark, or for a larger number of
quarks, there are different ways of linking the quarks to funda-
mental strings. The decision on how to attach the strings, say with
the flip-flop prescription of choosing the string configuration lead-
ing to a lower potential energy, must be taken externally to the
method presented here.

For a meson (quark–antiquark system) the distance is trivially
the quark–antiquark distance. For a baryon (three quark system)
the problem was first solved geometrically by Fermat and by Tor-
ricelli. In the case of 3 quarks, the minimization of the potential in
Eq. (1) implies that

r̂1 I + r̂2 I + r̂3 I = 0, (2)

and it is clear that the solution is that, either the triangle is not
sufficiently acute, or the angles are all equal to 120◦ ,

r̂1 I, r2 I = r̂2 I, r3 I = r̂3 I, r1 I = 120◦. (3)

Due to the beauty of the triangles, and also to their simplic-
ity, there are numerous geometry textbooks and articles on the
Fermat–Torricelli point [1–6]. However, when the number of
quarks increase, to tetraquarks, pentaquarks, etc., the geometric
construction of the Fermat points becomes more and more diffi-
cult. Thus a numerical solution of this problem is welcome.

Here we address the computation of the total string distance
and of the Fermat points where the different strings meet. In Sec-
tion 2 we review briefly the geometrical methods leading to the
Fermat points and to the total distances. In Section 3 we provide
an iterative method, converging fast to the correct Fermat points
and the total distances, relevant for the multiquark potentials. We
detail the cases of the baryon, the tetraquark, the pentaquark and
the hexaquark. In Section 4 we conclude.

Fig. 2. A step in the geometric construction of the first Fermat point of an acute
triangle. Starting from the segment Q 1 Q 2, an equilateral triangle with vertex V 12

is constructed. The Fermat point F I belongs to the arc of circle centered in V 12 and
passing by Q 1 and Q 2.

2. Brief review of the geometrical method

In an acute triangle, the Fermat point F I is the isogonic point,
defined in Eq. (3). To construct the isogonic point, we start by the
first pair of vertices Q 1 and Q 2, noticing that the set of points F I

with fixed angle ̂Q 1 F I Q 2 = 120◦ belong to an arc of circle. More-
over this circle is centred in the other vertex V 12 of an equilateral
triangle including Q 1 and Q 2. In Fig. 2 we show the 120◦ arc of
circle, the equilateral triangle, and a segment including the points
V 12 and F I . Notice that the other end of this segment forms with
the segments Q 1 F I and F I Q 2 angles of 120◦ . Thus the isogonic
point belongs this arc of circle. This point is at the intersection of
the segments V 12 Q 3, V 23 Q 1 and V 31 Q 2. The construction of first
Fermat point F I is illustrated in Fig. 3. It is very simple in a geo-
metrical perspective, and it can be done just with a compass and
a rule.

We now proceed with the tetraquark. This geometrical method
can be extended to construct the two Fermat points F I and F II of a
tetraquark. Notice that in the tetraquark we have four points, and
thus in general the points Q 1, Q 2, Q 3 and Q 4 are not coplanar.
Thus the vertices V 12 and V 34 are not, from the onset deter-
mined, only the circles where they belong are determined with
the technique already used for the baryon. To determine the ver-
tices, notice that the vertex V 12 must be as far as possible from
the segment Q 3 Q 4 and that the vertex V 34 must be as far as
possible from the segment Q 1 Q 2. Thus we find that the segment
V 12 V 34 must intersect the segment Q 1 Q 2 and the segment Q 3 Q 4.
Then, once the segment V 12 V 34 is determined, the Fermat points
F I and F II are determined because the distances V 12 F I = Q 1 Q 2
and V 34 F II = Q 3 Q 4. This is illustrated in Fig. 4.
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