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We present results for the negative parity low-lying state of the nucleon, N 1
2

−
(1535 MeV) S11, from a

variational analysis method. The analysis is performed in quenched QCD with the FLIC fermion action. The
principal focus of this Letter is to explore the level ordering between the Roper (P11) and the negative
parity ground (S11) states of the nucleon. Evidence of the physical level ordering is observed at light
quark masses. A wide variety of smeared-smeared correlation functions are used to construct correlation
matrices. A comprehensive correlation matrix analysis is performed to ensure an accurate isolation of the
N 1

2
−

state.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Lattice QCD is very successful in computing many properties
of hadrons from first principles. In particular, the ground state
of the hadron spectrum is a well understood problem [1]. How-
ever, the excited states still prove a significant challenge. One of
the long-standing puzzles in hadron spectroscopy has been the
low mass of the first positive parity excitation of the nucleon,
known as the Roper resonance, N 1

2
+

(1440 MeV)P11, compared

to the lowest-lying negative parity partner, N 1
2

−
(1535 MeV)S11.

This phenomenon cannot be observed in constituent or valence
quark models where the lowest-lying odd parity state naturally
occurs below the N = 1

2
+

state. Similar difficulties in the level or-

derings also appear for the J P = 3
2

+
�∗(1600) and 1

2
+
Σ∗(1690)

resonances.
There has been extensive research focussing on the issue of the

level ordering problem using the lattice QCD approach [2–14]. One
of the state-of-the-art approaches that has been used extensively
in hadron spectroscopy is the ‘variational method’ [15,16], which
is based on a correlation matrix analysis. In the past the isolation
of the Roper resonance was elusive with this method. However,
in Refs. [17,18] a low-lying Roper state has been identified using
a correlation matrix construction with smeared-smeared correla-
tors. Our work there motivates us to investigate the long-standing
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level ordering problem using the same techniques on the same lat-
tice.

In contrast to the positive parity ground state of the nucleon,
N 1

2
+

, which has a large plateau over Euclidean-time, the correla-

tion functions for the negative parity ground state, N 1
2

−
, are short-

lived giving shorter plateaus at earlier Euclidean times. Therefore,
the standard analysis to extract the N 1

2
−

ground state from small
Euclidean-times may provide a mixture of ground and excited
states. On the other hand, the variational method accounts for the
presence of excited states in the correlation functions via correla-
tion matrices. The masses of the energy states are then obtained
by projecting the correlation matrix to eigenstates [17] providing a
robust approach for extracting the energy states. In addition, con-
sidering several bases in constructing different correlation matrices
provides a substantial verification of the analysis technique, in al-
lowing the consistency of the energy states over the different basis
and the reliability of the extracted eigenstates energies to be ex-
plored.

In this Letter, we use the same approach as that of Ref. [17]
to isolate the negative parity states of the nucleon. In particular,
we focus on the negative parity state to explore the level ordering
problem.

Various sweeps of gauge invariant Gaussian smearing [19] are
used to construct a smeared-smeared correlation function basis to
form correlation matrices.

This Letter is arranged as follows: Section 2 contains a brief de-
scription of the variational method. Lattice details are in Section 3.
Results are discussed in Section 4 and conclusions are presented in
Section 5.
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2. Variational method

The two point correlation function matrix for �p = 0 can be
written as

G±
i j (t) =

∑
�x

Trsp
{
Γ±〈Ω|χi(x)χ̄ j(0)|Ω〉}, (1)

=
∑
α

λα
i λ̄α

j e−mαt, (2)

where, Dirac indices are implicit. Here, λα
i and λ̄α

j are the cou-
plings of interpolators χi and χ̄ j at the sink and source respec-
tively and α enumerates the energy eigenstates with mass mα .
Γ± = 1

2 (γ0 ± 1) projects the parity of the eigenstates.
Since the only t dependence comes from the exponential term,

one can seek a linear superposition of interpolators, χ̄ juα
j , such

that,

Gij(t0 + �t) uα
j = e−mα�t Gi j(t0) uα

j , (3)

for sufficiently large t0 and t0 + �t . More detail can be found in
Refs. [6,20,21]. Multiplying the above equation by [Gij(t0)]−1 from
the left leads to an eigenvalue equation,

[(
G(t0)

)−1
G(t0 + �t)

]
i j uα

j = cα uα
i , (4)

where cα = e−mα�t is the eigenvalue. Similar to Eq. (4), one can
also solve the left eigenvalue equation to recover the vα eigenvec-
tor,

vα
i

[
G(t0 + �t)

(
G(t0)

)−1]
i j = cα vα

j . (5)

The vectors uα
j and vα

i diagonalize the correlation matrix at time
t0 and t0 + �t making the projected correlation matrix,

vα
i G±

i j (t)uβ

j ∝ δαβ. (6)

The parity projected, eigenstate projected correlator,

Gα± ≡ vα
i G±

i j (t)uα
j , (7)

is then analyzed using standard techniques to obtain the masses of
different states.

3. Simulation details

Our lattice ensemble is the same as that explored in Ref. [17].
It consists of 200 quenched configurations with a lattice volume
of 163 × 32. Gauge field configurations are generated by using the
DBW2 gauge action [22,23] and an O(a)-improved FLIC fermion
action [24] is used to generate quark propagators. This action has
excellent scaling properties and provides near continuum results
at finite lattice spacing [25]. The lattice spacing is a = 0.127 fm, as
determined by the static quark potential, with the scale set using
the Sommer scale, r0 = 0.49 fm [26]. In the irrelevant operators
of the fermion action we apply four sweeps of stout-link smearing
to the gauge links to reduce the coupling with the high frequency
modes of the theory [27] providing O(a) improvement [25]. We
use the same method as in Refs. [28,20] to determine fixed bound-
ary effects, and the effects are significant only after time slice 25
in the present analysis. Various sweeps of gauge invariant Gaussian
smearing [19] (1, 3, 7, 12, 16, 26, 35, 48 sweeps) corresponding to
rms radii, in lattice units, of 0.6897, 1.0459, 1.5831, 2.0639, 2.3792,
3.0284, 3.5237, 4.1868, are applied at the source (t = 4) and at the
sink. This is to ensure a large range of overlaps of the interpola-

tors with the lower-lying states. The analysis is performed on eight
different quark masses corresponding to pion masses of mπ =
{0.797,0.729,0.641,0.541,0.430,0.380,0.327,0.295} GeV. The er-
ror analysis is performed using the jackknife method, with the
χ2/dof obtained via a covariance matrix analysis method. Our fit-
ting method is discussed extensively in Ref. [20].

The nucleon interpolators we consider are,

χ1(x) = εabc(uTa(x)Cγ5 db(x)
)
uc(x), (8)

χ2(x) = εabc(uTa(x)C db(x)
)
γ5uc(x). (9)

We use the Dirac representation of the gamma matrices in our
analysis.

4. Results

We consider several 3×3, 4×4, 6×6 and 8×8 correlation ma-
trices. Each matrix is constructed with different sets of correlation
functions, each set element corresponding to a different numbers
of sweeps of gauge invariant Gaussian smearing at the source and
sink of the χ1χ̄1, χ2χ̄2 and χ1χ2 correlators [18]. This provides a
large basis of operators with a variety of overlaps among energy
states.

We consider five smearing combinations (bases) {1 = (7,16,26),

2 = (7,16,35),3 = (12,16,26),4 = (12,26,35),5 = (16,26,35)}
for 3 × 3 correlation function matrices and four combinations {1 =
(1,12,26,48),2 = (3,12,26,35),3 = (3,12,26,48),4 = (12,16,

26,35)} for 4 × 4 matrices, of χ1χ̄1 correlation functions. In
the latter case these four combinations are found optimal for
the reliable extraction of the low-lying energy states shown in
Ref. [17]. Including the χ2 interpolator, which vanishes in the
non-relativistic limit [29,30], in correlation matrix analysis pro-
vides extra challenges. Nonetheless, we consider this interpo-
lator for the reliable extraction of the negative parity ground
state mass. The same bases, as discussed above for the χ1χ̄1
analysis, are also considered for the 3 × 3 and 4 × 4 correla-
tion matrices of χ2χ̄2 correlation functions. We also consider
four smearing combinations {1 = (3,12,26),2 = (3,16,48),3 =
(7,16,35),4 = (12,16,26)} of 6 × 6 and four combinations {1 =
(3,12,26,48),2 = (7,12,26,35),3 = (7,16,26,35),4 = (7,16,

35,48)} for 8 × 8 matrices of χ1χ2 correlation functions.
In Fig. 1, masses from the projected correlation functions and

from the eigenvalues are shown for the 3 × 3 and 4 × 4 corre-
lation matrices. We refer to the lowest lying state as the ground
state in the negative parity sector. As in Refs. [20,17], masses from
the projected correlation functions for the low-lying states are
very consistent over the variational parameters of tstart and �t ,
in particular, the negative parity ground state is robust. However,
a deteriorating signal to noise is evident for larger tstart and �t val-
ues, particularly for the excited states. In contrast, the mass from
the eigenvalue analysis shows significant dependence on the vari-
ational parameters. Therefore, exposing a mass from the projected
correlation functions is again proved to be more reliable than from
the eigenvalues [17].

From a series of tstart and �t , a single mass is selected for one
set of tstart and �t by the selection criteria discussed in Ref. [20],
where we prefer larger value of tstart + �t [21]. In cases where a
larger tstart + �t provides a poor signal-to-noise ratio, for example
(tstart,�t) = (7,3) (top left graph of Fig. 1), we prefer a little lower
tstart +�t value, for example (tstart,�t) = (7,2), and we follow this
procedure for each quark mass, as discussed in Ref. [18].

In Fig. 2, masses extracted from all the combinations of 3 × 3
matrices (from 1st to 5th) are shown for the pion mass of 797
and 380 MeV. Here the negative parity ground and the first ex-
cited states are very consistent for all the 3 × 3 bases. The second
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