
Physics Letters B 670 (2009) 340–349

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Weak basis transformations and texture zeros in the leptonic sector

G.C. Branco a, D. Emmanuel-Costa a, R. González Felipe b,a,∗, H. Serôdio a

a Departamento de Física and Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
b Área Científica de Física, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 November 2007
Received in revised form 29 July 2008
Accepted 27 October 2008
Available online 5 November 2008
Editor: G.F. Giudice

PACS:
14.60.Lm
14.60.Pq
14.60.St

Keywords:
Neutrino masses and mixing
Weak basis
CP violation

We investigate the physical meaning of some of the texture zeros which appear in most of the ansatzes
on leptonic masses and their mixing. It is shown that starting from arbitrary lepton mass matrices
and making suitable weak basis transformations one can obtain some of these sets of zeros, which
therefore have no physical content. We then analyse four-zero texture ansatzes where the charged
lepton and neutrino mass matrices have the same structure. The four texture zeros cannot be obtained
simultaneously through weak basis transformations, so these ansatzes do have physical content. We show
that they can be separated into four classes and study the physical implications of each class.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of neutrino oscillations pointing towards the existence of non-vanishing neutrino masses and large leptonic mixing has
rendered the flavour puzzle even more intriguing. There have been many attempts at understanding the pattern of leptonic masses and
mixing [1], including the introduction of either Abelian or non-Abelian flavour symmetries, some of them leading to texture zeros in the
fermion mass matrices. In the leptonic sector there is an extra motivation for introducing texture zeros, namely the fact that without
an appeal to theory, it is not possible to fully reconstruct the neutrino mass matrix mν from experimental input arising from feasible
experiments. It has been shown that this is possible if one postulates the presence of texture zeros in mν [2] or if one assumes that
det(mν) vanishes [3].

A difficulty one encounters in an attempt at making a systematic study of experimentally viable texture zeros results from the fact
that some sets of these zeros have, by themselves, no physical meaning, since they can be obtained starting from arbitrary fermion mass
matrices, by making appropriate weak basis (WB) transformations which leave the gauge currents flavour diagonal [4].

In this Letter we investigate in detail what are the texture zeros which can be obtained in the leptonic sector with Majorana neutrinos
through WB transformations. We then analyse the physical implications of ansatzes where the charged lepton mass matrix m� and the ef-
fective Majorana neutrino mass matrix mν have the same structure (we denote them “parallel ansatzes”), with a total of four independent
zeros. These ansatzes do have physical meaning, since not all their texture zeros can be simultaneously obtained through WB transforma-
tions. Although there is no universal principle requiring parallel structures, they certainly have an aesthetical appeal and naturally arise in
some classes of family symmetries as well as in the framework of some grand-unified theories [5].

This Letter is organised as follows. In the next section, we show that starting from arbitrary structures for the leptonic mass matrices it
is possible to obtain, through WB transformations, m� Hermitian with a texture zero in the (1,1) position while mν (which is symmetric
due to its assumed Majorana nature) has zeros in the (1,1) and (1,3) entries. In Section 3, we analyse four-zero parallel ansatzes, showing
that they can be divided into four different classes. In Section 4 we confront these ansatzes with the present experimental data and analyse
their predictions. Finally, in the last section we draw our conclusions.
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2. Creating texture zeros through WB transformations

We assume the Standard Model with left-handed neutrinos together with some unspecified mechanism leading to lepton-number
violation and the generation of a left-handed Majorana mass for neutrinos. The most general WB transformation which leaves the gauge
currents invariant is

m� → m′
� = W †m�W R , mν → m′

ν = W Tmν W , (1)

where W and W R are 3 × 3 unitary matrices, while m� , mν denote the charged lepton and neutrino mass matrices, respectively. It is
possible to make a WB transformation which renders m� real and diagonal. In this basis, one has:

m� = D�, mν = U∗DνU †, (2)

where D� = diag(me,mμ,mτ ) and Dν = diag(m1,m2,m3) are real diagonal matrices. The unitary matrix U is the so-called Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrix [6] which can be parametrised as

U =
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠ Pα, (3)

where ci j ≡ cos θi j , si j ≡ sin θi j ; θi j are mixing angles and δ is CP-violating Dirac phase. The diagonal matrix Pα = diag(eiα1/2, eiα2/2,1)

contains the Majorana phases, α1, α2, which have physical meaning only if light neutrinos are Majorana particles. Although Majorana
phases do not affect neutrino oscillations, they do play a role in neutrinoless double beta decay, contributing to so-called effective Majorana
mass [7]

mββ ≡ m1U∗ 2
e1 + m2U∗ 2

e2 + m3U∗ 2
e3 . (4)

2.1. Creating the (1,1) zero in m� and mν

Our goal is to investigate whether it is always possible to find a WB transformation which, starting from arbitrary matrices m� and
mν , in the basis given in Eq. (2), leads to new matrices m′

� and m′
ν such that (m′

�)11 = (m′
ν)11 = 0 and m� Hermitian. In this case, the WB

transformations of Eq. (1) are restricted to those with W R = W , i.e.,

m� → m′
� = W † D�W , mν → m′

ν = W TU∗DνU †W . (5)

The requirement that (m′
�)11 and (m′

ν)11 vanish leads to the conditions

me|W11|2 + mμ|W21|2 + mτ |W31|2 = 0, (6)

m1 X2
11 + m2 X2

21 + m3 X2
31 = 0, (7)

where X ≡ U †W . The matrix elements X2
i1 (i = 1,2,3) in Eq. (7) are given by

X2
i1 = U∗ 2

1i W 2
11 + U∗ 2

2i W 2
21 + U∗ 2

3i W 2
31 + 2 U∗

1i W11U∗
2i W21 + 2 U∗

1i W11U∗
3i W31 + 2 U∗

2i W21U∗
3i W31. (8)

It is clear that in order for Eq. (6) to have a solution, one of the masses me , mμ or mτ must have a sign opposite to the other two.
This requirement can be always fulfilled, since the sign of a Dirac fermion mass can always be changed by making an appropriate chiral
transformation. In order for Eq. (7) to have a solution, the three real non-negative quantities ai ≡ |mi X2

i1| should be such that a triangle
can be formed with sides a1, a2 and a3. A necessary and sufficient condition for them to be the sides of a triangle is that:

2
(
a2

1a2
2 + a2

1a2
3 + a2

2a2
3

) − a4
1 − a4

2 − a4
3 � 0. (9)

Given (me,mμ,mτ ), (m1,m2,m3) and U , a solution to Eqs. (6) and (7) can be found through the following procedure:

(i) Find |W11|, |W21| and |W31| such that Eq. (6) is satisfied. It is clear that this is always possible. One can parametrise the first column
of W as

|W11| = cos θ cosψ, |W21| = sin θ cosψ, |W31| = sin ψ. (10)

Then a solution of Eq. (6) can be found by adjusting the angles θ and ψ .
(ii) In order to satisfy Eq. (7), one has to choose W in such a way that the inequality in Eq. (9) is verified. Finding a solution of Eq. (7)

is then equivalent to the problem of determining the internal angles of a triangle from the knowledge of its sides. If we denote
ϕi j ≡ arg(Xij), the internal angles of the triangle are given by 2(ϕ21 − ϕ11) and 2(ϕ31 − ϕ11).

2.2. Creating an additional zero

Once the zero in the position (1,1) is obtained, a natural question to ask is whether one can get additional WB zeros while keeping
m� Hermitian. It can be readily seen that there exists a second WB transformation that keeps (m′

�)11 = (m′
ν)11 = 0 and leads either to

(m′
�)13 = 0 or to (m′

ν)13 = 0. Such a transformation is defined by the unitary matrix

W =
⎛
⎝1 0 0

0 cos θ −eiϕ sin θ

0 e−iϕ sin θ cos θ

⎞
⎠ , (11)
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