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The membrane paradigm approach to black hole physics introduces the notion of a stretched horizon
as a fictitious time-like surface endowed with physical characteristics such as entropy, viscosity and
electrical conductivity. We show that certain properties of the stretched horizons are encoded in the
quasinormal spectrum of black holes. We compute analytically the lowest quasinormal frequency of a
vector-type perturbation for a generic black hole with a translationally invariant horizon (black brane)
in terms of the background metric components. The resulting dispersion relation is identical to the one
obtained in the membrane paradigm treatment of the diffusion on stretched horizons. Combined with
the Buchel–Liu universality theorem for the membrane’s diffusion coefficient, our result means that in
the long wavelength limit the black brane spectrum of gravitational perturbations exhibits a universal,
purely imaginary quasinormal frequency. In the context of gauge–gravity duality, this provides yet another
(third) proof of the universality of shear viscosity to entropy density ratio in theories with gravity duals.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the membrane paradigm approach to black holes, the hori-
zon is replaced by a time-like surface (the stretched horizon) lo-
cated infinitesimally close to the true mathematical horizon [1,2].
The stretched horizon behaves as an effective membrane endowed
with physical properties such as electrical conductivity and vis-
cosity. Furthermore, in the case of black branes (black holes with
translationally invariant horizons) it was shown [3] that the charge
density j0 defined on the stretched horizon by the standard mem-
brane paradigm construction [4] obeys the diffusion equation

∂t j0 = D∇2 j0 (1)

in the long-wavelength (hydrodynamic) limit. (The translational
invariance of the horizon guarantees the existence of the hydrody-
namic limit.) The corresponding dispersion relation has the form

ω = −iDq2, (2)

where q is the momentum along the stretched horizon. For a
generic black brane metric, the diffusion coefficient D can be
determined explicitly in terms of the metric components [3].
Moreover, for the so-called shear mode of the metric fluctua-
tion, one can write an effective Maxwell action and an effective
charge density on the stretched horizon satisfying Eq. (1) with the
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shear mode damping constant determined by the ambient metric.
A number of examples considered in [3] suggested that (1) the
membrane’s shear mode damping constant was equal to 1/4π T
independently of the background metric and (2) the membrane’s
diffusion and the shear mode damping constants coincided, re-
spectively, with the appropriate diffusion and damping constants
of the currents and stress-energy tensors in the dual theory com-
puted via the AdS/CFT correspondence. Using Einstein’s equations,
Buchel and Liu [5] proved that the suggestion (1) is universally
true for the class of metrics considered in [3]. (An alternative
proof of the universality of the membrane’s coefficient employing
the Lorentz boost of the black brane metric can be found in Sec-
tion 6 of the review [6].) This proof, however, cannot be viewed
as the proof of the universality of the shear viscosity to entropy
density ratio in the dual field theory without the proof of the
suggestion (2). One of the goals of the present Letter is to sup-
ply this missing link by proving the suggestion (2). To prove it,
we need either to understand why the membrane paradigm ap-
pears to “know” about the gauge/gravity duality or to derive the
generic formulas of [3] for the diffusion and damping constants by
holographic means only, without appealing to membrane paradigm
constructions. In this Letter, we focus on the latter alternative.

More generally, our goal is to show that at least some of the
properties of the stretched horizon are encoded in the quasinormal
spectrum of the corresponding black hole (brane). (For a review
on quasinormal modes see e.g. [7].) We compute analytically the
lowest quasinormal frequency of a vector-type fluctuation in the
background of a black brane and show that it is of the form (2)
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with the coefficient D identical to the diffusion coefficient com-
puted in [3] using the “membrane paradigm” approach. Since in
the gauge/gravity duality the quasinormal spectrum of bulk field
fluctuations is identified with the poles of the retarded correlators
of operators dual to the fluctuations [8], our result proves the sug-
gestion (2) and, together with Ref. [5] (or Ref. [6]), provides yet
another proof of the universality of the shear viscosity to entropy
density ratio in thermal field theories in the regime described by
dual classical gravity. (The other two proofs are Refs. [9,10]. Clearly,
all three approaches are interrelated.)

2. Quasinormal spectrum of a U (1) fluctuation in a black brane
background

A black p-brane is represented by the metric

ds2 = Gtt(r)dt2 + Grr(r)dr2 + Gxx(r)
p∑

i=1

(
dxi)2

. (3)

Such metrics typically result from a dimensional reduction of
higher-dimensional supergravity solutions. As a guide, one can
have in mind the near-extremal black three-brane solution of type
II supergravity dimensionally reduced on a five-sphere

ds2 = r2

R2

(− f dt2 + dx2 + dy2 + dz2) + R2

r2 f
dr2,

f = 1 − r4
0

r4
, (4)

but our discussion will be quite general. We assume that the met-
ric (3) has a translationally-invariant event horizon at r = r0 that
extends in p spatial dimensions parametrized by the coordinates
xi . It will be convenient to introduce a dimensionless coordinate
u = r2

0/r2 that maps the semi-infinite interval r ∈ [r0,∞) into a
finite one, u ∈ [0,1]. The metric becomes

ds2 = gtt(u)dt2 + guu(u)du2 + gxx(u)

p∑
i=1

(
dxi)2

, (5)

where the components are related to the ones in Eq. (3) by trivial
redefinitions [3]. We assume that near the horizon, i.e. in the limit
u → 1, the components gtt , guu , gxx behave as

gtt = −(1 − u)γ0 + O (1 − u), (6)

guu = γu

1 − u
+ O (1), (7)

gxx = O (1), (8)

where γ0 and γu are positive constants. We also introduce a ther-
mal factor function

f (u) = −gtt(u)/gxx(u). (9)

The function f (u) has a simple zero at u = 1. The Hawking tem-
perature associated with the background (5) is

T = 1

4π

√
γ0

γu
. (10)

In our example of the black three-brane solution (4), the metric in
the new coordinates is given by

ds2 = (π T R)2

u

(− f (u)dt2 + dx2 + dy2 + dz2) + R2

4u2 f (u)
du2,

f = 1 − u2. (11)

Consider now fluctuations of a U (1) field Aμ(u, t, x) in the
background (5). This field can be viewed e.g. as a graviphoton of

the dimensional reduction. Translational invariance of the horizon
implies that the fluctuation can be taken to be proportional to
e−iωt+iqx , and we choose the spatial momentum to be directed
along x ≡ xp .

In the gauge Au = 0, Maxwell’s equations ∂μ(
√−g F μν) = 0 for

the components At(u, t, x) and Ax(u, t, x) read

gttωA′
t − qgxx A′

x = 0, (12)

∂u
(√−g gtt guu A′

t

) − √−g gtt gxx(ωq Ax + q2 At
) = 0, (13)

∂u
(√−g gxx guu A′

t

) − √−g gtt gxx(ωq At + ω2 Ax
) = 0, (14)

where prime denotes the derivative with respect to u. All other
components of Aμ(u, t, x) decouple, and thus can be consistently
set to zero.

For a gauge-invariant combination Ex = ωAx + q At (the compo-
nent of the electric field parallel to the brane) the system (12)–(14)
yields the following equation

E ′′
x +

[
w2 f ′

f (w2 − q2 f )
+ ∂u log

(√−g gtt guu)]
E ′

x

+ (2π T )2 gxx

f guu

(
w2 − q2 f

)
Ex = 0, (15)

where w = ω/2π T , q = q/2π T . The differential equation (15) has
a singular point at u = 1 with the exponents α± = ±iw/2 corre-
sponding to the waves emerging from and disappearing into the
horizon. Imposing the incoming wave boundary condition at the
horizon, one can write the solution as

Ex(u) = f −iw/2 F (u), (16)

where F (u) is regular at u = 1. At spatial infinity, u = 0, we impose
the Dirichlet boundary condition Ex(0) = 0.

We are interested in computing the quasinormal spectrum of
the fluctuation Ex subject to the boundary conditions stated above.
Generically, we expect the spectrum to consist of an infinite tower
ωn = ωn(q) of the discrete complex frequencies. The lowest fre-
quency, ω0(q), can have a finite gap as q → 0, or be gapless,
limq→0 ω0(q) = 0. We will now show that the frequency of the
vector-like fluctuation Ex(u, t, x) is in fact gapless, and compute its
value in the limit of small ω, q.

An analytic solution to Eq. (15) in the limit w 	 1, q 	 1
can be easily found. Introducing a book-keeping parameter λ and
rescaling w → λw, q → λq, one can obtain a perturbative solution
in the form

Ex(u,w,q) = f −iw/2(F0(u) + λF1(u) + O
(
λ2)), (17)

where each of the functions Fi(u) obeys an equation derived from
Eq. (15). The equation for F0(u) has a generic solution

F0 = C0 + C1

∫
(w2 − q2 f )du

f
√−g gtt guu

, (18)

where C0, C1 are integration constants. The integral in Eq. (18) is
logarithmically divergent at u = 1. Since by construction F0 is a
regular function, we must put C1 = 0. The function F1(u) obeys an
inhomogeneous equation whose regular at u = 1 solution is given
by

F1(u) = − iwC0

2
log f − iC0

√−g(1) f ′(1)

2wγ0γu

∫
(w2 − q2 f )du

f
√−g gtt guu

. (19)

Given these explicit solutions, we use the Dirichlet condition
Ex(0) = 0 to obtain the following equation for w

w − iq2
√−g(1) f ′(1)

2γ0γu

1∫
0

du√−g gtt guu
+ O

(
w2) = 0. (20)
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