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We illustrate some physical application of a lattice formulation of the two-dimensional N = (2,2)

supersymmetric SU(2) Yang–Mills theory with a (small) supersymmetry breaking scalar mass. Two
aspects, power-like behavior of certain correlation functions (which implies the absence of the mass gap)
and the static potential V (R) between probe charges in the fundamental representation, are considered.
For the latter, for R � 1/g, we observe a linear confining potential with a finite string tension. This
confining behavior appears distinct from a theoretical conjecture that a probe charge in the fundamental
representation is screened in two-dimensional gauge theory with an adjoint massless fermion, although
the static potential for R � 1/g has to be systematically explored to conclude real asymptotic behavior
in large distance.

© 2009 Elsevier B.V.

1. Introduction

Recently, through the observation of a “partially conserved su-
percurrent relation”, we obtained [1] an affirmative numerical evi-
dence that a lattice formulation in Ref. [2] provides a supersym-
metric regularization of the two-dimensional N = (2,2) super-
symmetric Yang–Mills theory (SYM) 1 2

S = 1

g2

∫
d2x tr

{
1

2
F MN F MN + Ψ T CΓM DMΨ + H̃2

}
, (1)

when one supplements to S a supersymmetry breaking scalar
mass term

Smass = 1

g2

∫
d2xμ2 tr{A2 A2 + A3 A3}. (2)

* Corresponding author.
E-mail addresses: kanamori-i@riken.jp (I. Kanamori), hsuzuki@riken.jp

(H. Suzuki).
1 For other lattice formulations of this system, see Refs. [3–9]. For recent devel-

opments in this field of research, see Ref. [10] for a review and references cited in
Ref. [1]. As further recent study, see Refs. [11–19].

2 This system can be obtained by dimensionally reducing the four-dimensional
N = 1 SYM from four to two dimensions and hence a four-dimensional notation is
useful; Roman indices M and N run over 0, 1, 2 and 3, while Greek indices μ and
ν below run over only 0 and 1. With the dimensional reduction, it is understood
that ∂2 = 0 and ∂3 = 0. Ψ is a four-component spinor. We follow the notational
convention in Ref. [1]. Note that the gauge coupling g has the mass dimension 1.

The scalar mass term was added to suppress a possible large am-
plitude of scalar fields along flat directions that may amplify O (a)

lattice artifacts to O (1) [1]. In the present Letter, we illustrate
some physical application of this lattice formulation for the sys-
tem S + Smass.

2. Correlation functions with power-like behavior

Assuming the ’t Hooft anomaly matching condition, in Ref. [20],
it was pointed out that the two-dimensional N = (2,2) SYM has
no mass gap. This aspect has been numerically investigated from
almost a decade ago [21,22] by utilizing the supersymmetric dis-
cretized light-cone formulation [23]. In this super-renormalizable
system, it is in fact possible to determine (to all orders of pertur-
bation theory) an explicit form of a correlation function between
Noether currents, by employing anomalous Ward–Takahashi (WT)
identities (i.e. the Kac–Moody algebra) [24]; this explicit form di-
rectly proves the above assertion. Here, rather than supersymme-
try, continuous global (bosonic) symmetries are important and the
proof [24] applies even with supersymmetry breaking scalar mass
term (2).

The total action S + Smass is invariant under the (two-dimensio-
nal) U (1)V transformation, Ψ → exp{iαΓ5}Ψ , and an associated
Noether current (U (1)V current) is given by

jμ ≡ 1

g2
tr

{
Ψ T CΓμΓ5Ψ

}
. (3)
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Table 1
Sets of uncorrelated configurations used for Figs. 1 and 2. The scalar mass squared
is μ2/g2 = 0.25 for all cases.

Lattice size ag βg × Lg Number of configurations Set label

16 × 8 0.1768 2.828 × 1.414 400 I
20 × 10 0.1414 2.828 × 1.414 800 II
24 × 12 0.1179 2.828 × 1.414 400 III
20 × 16 0.1414 2.828 × 2.263 400 IV

Similarly, associated with the U (1)A symmetry, Ψ → exp{αΓ2Γ3}Ψ ,
A2 → cos{2α}A2 − sin{2α}A3 and A3 → sin{2α}A2 + cos{2α}A3,
there is a Noether current (U (1)A current),

j5μ ≡ 1

g2
tr

{−iΨ T CΓμΓ2Γ3Ψ + 4i(A3 Fμ2 − A2 Fμ3)
}
. (4)

It is then possible to show that [24], for the two-dimensional eu-
clidean space R

2,

− i

2

〈
jμ(x)ενρ j5ρ(0)

〉

= 1

4π

(
N2

c − 1
) ∫

d2 p

(2π)2
eipx

×
{
− 1

p2
(pμpν − εμρενσ pρ pσ ) + c̃δμν

}

= 1

4π

(
N2

c − 1
){ 1

π

1

(x2)2
(xμxν − εμρενσ xρxσ ) + c̃δμνδ2(x)

}
, (5)

to all orders of perturbation theory, where Nc is the number of
colors and the constant c̃ is a regularization ambiguity in a diver-
gent one-loop diagram. Thus the correlation function between the
U (1)V current and the U (1)A current possesses a massless pole
and this is precisely what the ’t Hooft anomaly matching condi-
tion claims for this two-dimensional system.

We want to confirm the power-like behavior of correlation
function in Eq. (5) by using a lattice Monte Carlo simulation. For
this, we prepared sets of uncorrelated configurations listed in Ta-
ble 1. For simulation details, see Refs. [1,25,26]. In the table, a de-
notes the lattice spacing and β and L are temporal and spatial
physical sizes of our lattice, respectively. The scalar mass squared
is μ2/g2 = 0.25 for all cases. The temporal boundary condition
for fermionic variables is antiperiodic as in Ref. [1]. For current
operator (4), we discretized the covariant derivatives Fμ2 = Dμ A2
and Fμ3 = Dμ A3 by using the forward covariant lattice difference.
Eq. (5) suggests that we should not take an average of the cor-
relation function over the spatial coordinate x1 (i.e., projection to
the zero spatial momentum) because after the average, correlation
function (5) becomes proportional to δ(x0) that cannot be distin-
guished from the regularization ambiguity; we should measure the
correlation function as it stands without the zero spatial momen-
tum projection.

In Fig. 1, we plotted −i〈 jμ(x)ενρ j5ρ(0)〉/2 with μ = ν = 0
along the line x1 = 0. We plotted also theoretical prediction (5)
for R

2 with Nc = 2, (3/4π2)1/(x0)
2, by the broken line. We clearly

see the power-like fall of the correlation function for x0 g � 0.73 in-
stead of exponential one, although the overall amplitude is some-
what larger than the theoretical expectation for R

2. From the be-

3 In Fig. 1, we plotted the correlation function as a function of x0, along the line
x1 = 0. As x0 moves away from the origin x0 = 0, the point x approaches a periodic
image of the origin at x0 = β and for x0 � β/2 we expect the correlation function is
power-like in the variable β − x0. In other words, the fact that our finite-size lattice
is topologically T 2 but not R

2 cannot be neglected for x0 � β/2. We thus do not
expect the power-like fall (that is expected for R

2) for x0 g � 1 and actually the plot
blows up for x0 g � 1 (in our simulation, βg = 2.828). This remark is applied also
to Fig. 2, in which the antiperiodic boundary condition for fermionic fields implies
“blow-down” for x0 g � 1.

Fig. 1. The correlation function −i〈 jμ(x)ενρ j5ρ(0)〉/(2g2) with μ = ν = 0 along the
line x1 = 0, for the configuration sets in Table 1. The broken line is theoretical pre-
diction (5) for R

2.

havior in the figure, we think that this discrepancy in the overall
amplitude is caused by a finite lattice spacing and volume. In par-
ticular, comparison between set II (indicated by ×) and set IV
(indicated by ©) shows that the finite size effect is rather large
(note that these two sets differ only in the spatial physical size L).
We thus expect that the theoretical prediction for R

2 is eventually
reproduced in the limit, a → 0 and β , L → ∞, although we do not
carry out a systematic study on this limit.

What is the implication of the above observation? It indicates
that our target theory, the two-dimensional N = (2,2) SU(2) SYM
with a scalar mass term, is realized in the continuum limit of the
present lattice model. In particular, in deriving Eq. (5), one as-
sumes that the U (1)V and U (1)A currents jμ and j5ν individually
conserve [24].4 One assumes U (1)V and U (1)A symmetries in this
sense. In the present lattice formulation [2], the U (1)V symmetry
is explicitly broken for finite lattice spacings. The above observa-
tion hence indicates that the U (1)V symmetry is fairly restored
with present lattice spacings. (This symmetry will eventually be
restored in the continuum limit [1].)

Now, if the system were supersymmetric, and if supersym-
metry is not spontaneously broken, there would exist a massless
fermionic state corresponding to the massless bosonic state ap-
pearing in Eq. (5) as an intermediate state. We expect that this
fermionic state produces a massless pole in the correlation func-
tions〈
(sμ)i(x)( fν)i(0)

〉
(i = 1,2,3,4; no sum over i), (6)

where i denotes the spinor index and

sμ ≡ − 1

g2
CΓMΓNΓμ tr{F MNΨ }, (7)

fμ ≡ 1

g2
Γμ

(
Γ2 tr{A2Ψ } + Γ3 tr{A3Ψ }). (8)

In the above, sμ is the supercurrent associated with the supersym-
metry of S , δAM = iεT CΓMΨ , δΨ = i

2 F MNΓMΓNε + i H̃Γ5ε , and

δ H̃ = −iεT CΓ5ΓM DMΨ , and fμ is a lowest-dimensional fermionic
spinor-vector (considered in Ref. [1]). Eq. (6) with i = 1, 2, 3, and
4 are precisely four correlation functions studied in Eq. (11) of
Ref. [1] and, as noted there, these four functions are identical to

4 This assumption fails, for example, in the massless Schwinger model, in which
the U (1)A current suffers from the axial anomaly; note that the massless Schwinger
model has a mass gap.



Download English Version:

https://daneshyari.com/en/article/1852100

Download Persian Version:

https://daneshyari.com/article/1852100

Daneshyari.com

https://daneshyari.com/en/article/1852100
https://daneshyari.com/article/1852100
https://daneshyari.com

