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We illustrate some physical application of a lattice formulation of the two-dimensional N = (2,2)
supersymmetric SU(2) Yang-Mills theory with a (small) supersymmetry breaking scalar mass. Two
aspects, power-like behavior of certain correlation functions (which implies the absence of the mass gap)
and the static potential V (R) between probe charges in the fundamental representation, are considered.
For the latter, for R < 1/g, we observe a linear confining potential with a finite string tension. This

confining behavior appears distinct from a theoretical conjecture that a probe charge in the fundamental
PACS: representation is screened in two-dimensional gauge theory with an adjoint massless fermion, although
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in large distance.
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the static potential for R 2> 1/g has to be systematically explored to conclude real asymptotic behavior
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1. Introduction

Recently, through the observation of a “partially conserved su-
percurrent relation”, we obtained [1] an affirmative numerical evi-
dence that a lattice formulation in Ref. [2] provides a supersym-
metric regularization of the two-dimensional N = (2,2) super-
symmetric Yang-Mills theory (SYM) ! 2
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when one supplements to S a supersymmetry breaking scalar
mass term

1
Smass = 23 / @x 12 tr{AzAy + AsAs). @)
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T For other lattice formulations of this system, see Refs. [3-9]. For recent devel-
opments in this field of research, see Ref. [10] for a review and references cited in
Ref. [1]. As further recent study, see Refs. [11-19].

2 This system can be obtained by dimensionally reducing the four-dimensional
N =1 SYM from four to two dimensions and hence a four-dimensional notation is
useful; Roman indices M and N run over 0, 1, 2 and 3, while Greek indices © and
v below run over only 0 and 1. With the dimensional reduction, it is understood
that 3, =0 and 93 =0. ¥ is a four-component spinor. We follow the notational
convention in Ref. [1]. Note that the gauge coupling g has the mass dimension 1.
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The scalar mass term was added to suppress a possible large am-
plitude of scalar fields along flat directions that may amplify O (a)
lattice artifacts to O(1) [1]. In the present Letter, we illustrate
some physical application of this lattice formulation for the sys-
tem S + Smass-

2. Correlation functions with power-like behavior

Assuming the 't Hooft anomaly matching condition, in Ref. [20],
it was pointed out that the two-dimensional A = (2,2) SYM has
no mass gap. This aspect has been numerically investigated from
almost a decade ago [21,22] by utilizing the supersymmetric dis-
cretized light-cone formulation [23]. In this super-renormalizable
system, it is in fact possible to determine (to all orders of pertur-
bation theory) an explicit form of a correlation function between
Noether currents, by employing anomalous Ward-Takahashi (WT)
identities (i.e. the Kac-Moody algebra) [24]; this explicit form di-
rectly proves the above assertion. Here, rather than supersymme-
try, continuous global (bosonic) symmetries are important and the
proof [24] applies even with supersymmetry breaking scalar mass
term (2).

The total action S+ Spass is invariant under the (two-dimensio-
nal) U(1)y transformation, ¥ — exp{iel5}¥, and an associated
Noether current (U(1)y current) is given by

_ 1
]Mzgtr{lI/TCFMIElI/}. (3)
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Table 1
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Sets of uncorrelated configurations used for Figs. 1 and 2. The scalar mass squared
is u?/g% =0.25 for all cases.

Lattice size ag Bg xLg Number of configurations Set label
16 x 8 0.1768 2.828 x 1.414 400 [

20 x 10 0.1414 2.828 x 1.414 800 11

24 x 12 0.1179 2.828 x 1.414 400 1

20 x 16 0.1414 2.828 x 2.263 400 v

Similarly, associated with the U(1)4 symmetry, ¥ — exp{a >3}V,
Ay — cos{2a}Ay; — sin{2a}As and A3 — sin{2a}A; + cos{2c}As,
there is a Noether current (U(1)4 current),

. 1 . ,
Jopu = o tr{—iw T Cr, M I3¥ + 4i(AsFpp — A Fu3)). (4)

It is then possible to show that [24], for the two-dimensional eu-
clidean space R?,

_%U/L(X)evijp(O))
_ 1 2 dzp ipx
- E( c ) (27T)2e

1 N
X {—?(pupv — €up€vo PpDo) +C5p,v}

1 2 1 1 - 2
= E(NC - ]) T (x2)2 XXy — €pp€voXpXo) + Couvd“(X) ¢, (5)

to all orders of perturbation theory, where N, is the number of
colors and the constant ¢ is a regularization ambiguity in a diver-
gent one-loop diagram. Thus the correlation function between the
U(1)y current and the U(1)4 current possesses a massless pole
and this is precisely what the 't Hooft anomaly matching condi-
tion claims for this two-dimensional system.

We want to confirm the power-like behavior of correlation
function in Eq. (5) by using a lattice Monte Carlo simulation. For
this, we prepared sets of uncorrelated configurations listed in Ta-
ble 1. For simulation details, see Refs. [1,25,26]. In the table, a de-
notes the lattice spacing and B and L are temporal and spatial
physical sizes of our lattice, respectively. The scalar mass squared
is u?/g% =0.25 for all cases. The temporal boundary condition
for fermionic variables is antiperiodic as in Ref. [1]. For current
operator (4), we discretized the covariant derivatives F;, = D A
and F;3 =D, A3 by using the forward covariant lattice difference.
Eq. (5) suggests that we should not take an average of the cor-
relation function over the spatial coordinate x; (i.e., projection to
the zero spatial momentum) because after the average, correlation
function (5) becomes proportional to §(xg) that cannot be distin-
guished from the regularization ambiguity; we should measure the
correlation function as it stands without the zero spatial momen-
tum projection.

In Fig. 1, we plotted —i(j,(X)€ypj55(0))/2 with u =v =10
along the line x; = 0. We plotted also theoretical prediction (5)
for R? with N. =2, (3/47m2)1/(xg)?, by the broken line. We clearly
see the power-like fall of the correlation function for xog < 0.73 in-
stead of exponential one, although the overall amplitude is some-
what larger than the theoretical expectation for RZ. From the be-

3 In Fig. 1, we plotted the correlation function as a function of xo, along the line
x1 =0. As Xp moves away from the origin xo = 0, the point x approaches a periodic
image of the origin at xo = 8 and for xo 2> 8/2 we expect the correlation function is
power-like in the variable 8 — xo. In other words, the fact that our finite-size lattice
is topologically T2 but not R? cannot be neglected for xo 2 /2. We thus do not
expect the power-like fall (that is expected for R?) for xog 21 and actually the plot
blows up for xog 2 1 (in our simulation, fg = 2.828). This remark is applied also
to Fig. 2, in which the antiperiodic boundary condition for fermionic fields implies
“blow-down” for xog 2> 1.
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Fig. 1. The correlation function —i(j, (x)€vp jsp (0))/(2g%) with &t =v =0 along the
line x; = 0, for the configuration sets in Table 1. The broken line is theoretical pre-
diction (5) for R2.

havior in the figure, we think that this discrepancy in the overall
amplitude is caused by a finite lattice spacing and volume. In par-
ticular, comparison between set II (indicated by x) and set IV
(indicated by () shows that the finite size effect is rather large
(note that these two sets differ only in the spatial physical size L).
We thus expect that the theoretical prediction for R? is eventually
reproduced in the limit, a — 0 and B8, L — oo, although we do not
carry out a systematic study on this limit.

What is the implication of the above observation? It indicates
that our target theory, the two-dimensional NV = (2,2) SU(2) SYM
with a scalar mass term, is realized in the continuum limit of the
present lattice model. In particular, in deriving Eq. (5), one as-
sumes that the U(1)y and U(1)4 currents j, and js, individually
conserve [24].4 One assumes U(1)y and U(1)4 symmetries in this
sense. In the present lattice formulation [2], the U(1)y symmetry
is explicitly broken for finite lattice spacings. The above observa-
tion hence indicates that the U(1)y symmetry is fairly restored
with present lattice spacings. (This symmetry will eventually be
restored in the continuum limit [1].)

Now, if the system were supersymmetric, and if supersym-
metry is not spontaneously broken, there would exist a massless
fermionic state corresponding to the massless bosonic state ap-
pearing in Eq. (5) as an intermediate state. We expect that this
fermionic state produces a massless pole in the correlation func-
tions

(5010 (f)i(0)) (1=1,2,3,4; no sum over i), (6)
where i denotes the spinor index and
1
S = =gz Cl W triFun ), 7
1
fu= Erﬂ(rz tr{AoW} + I3 tr{As¥}). (8)

In the above, s, is the supercurrent associated with the supersym-
metry of S, 8Ay = i€’ CIyW¥, 8¥ = S FynIwIye + iHT5e, and
SH = —ieTCrsryDy ¥, and fu is a lowest-dimensional fermionic
spinor-vector (considered in Ref. [1]). Eq. (6) with i =1, 2, 3, and
4 are precisely four correlation functions studied in Eq. (11) of
Ref. [1] and, as noted there, these four functions are identical to

4 This assumption fails, for example, in the massless Schwinger model, in which
the U(1)4 current suffers from the axial anomaly; note that the massless Schwinger
model has a mass gap.
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