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Recent research shows that fermions tunnelling can result in correct Hawking temperature of a black
hole. In this letter, choosing a set of appropriate matrices y*, we attempt to study Hawking radiation
of Dirac particles across the horizons of the GHS and non-extremal five-dimensional D1-D5 black holes
in string theory by using fermions tunnelling method. Finally, the expected Hawking temperatures of the
GHS and non-extremal D1-D5 black holes are correctly recovered.
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1. Introduction

In 1974, Hawking proved that a black hole can radiate particles
with thermal spectrum at the temperature T = « /27 [1], where
K is the surface gravity of the horizon. Since then, although many
methods have appeared to correctly derive Hawking radiation of
a black hole, not all of them are satisfying in the process of ex-
tending these methods. In 2000, Parikh and Wilczek, elaborating
Kraus and Wilczek’s work [2,3], presented another new deriva-
tion of Hawking radiation, where Hawking radiation is treated as
a quantum tunnelling process [4]. A pair of particles is sponta-
neously created just inside the horizon as a result of quantum
vacuum fluctuations near the horizon, classically the positive en-
ergy particle do not escape out along the classically forbidden
region, but quantum mechanically it can tunnel out to the infin-
ity. For the tunnelling picture, the Hawking temperature is directly
related to the imaginary part of the action of particles tunnelling
from inside to outside horizon along the classically forbidden re-
gion. In [4], derivation of the imaginary part of the action mainly
depends on the integration of the radial momentum p, for the
emitted particles, which is normally called as the Null Geodesic
method. The other method, appeared in [5], regards the action of
the emitted particles across the classically forbidden region satis-
fies the relativistic Hamilton-Jacobi equation, and solving it yields
the imaginary part of the action, which is an extension of the
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complex path analysis proposed by Padmanabhan et al. [6,7]. Till
now, the tunnelling method has been already proved very robust
for scalar particles across black hole horizons, and successfully re-
covered the correct Hawking temperatures of a wide variety of
interesting and exotic spacetimes [8-19].

Recently, Kerner and Mann, modelling Hawking radiation as
fermions tunnelling, have successfully recovered the Unruh and
Hawking temperatures for the Rindler spacetime and general non-
rotating black hole [20]. In the model, choosing a set of appro-
priate matrices ¥ is an important technique, or we may not
correctly recover the Hawking temperature we expected. And near
the horizon, the imaginary part of the action is determined by
the covariant Dirac equation. To further show the robustness of
fermions tunnelling method, many recent papers appear to discuss
Hawking radiation of Dirac particles via tunnelling from (2 + 1)-
dimensional BTZ black hole [21], dynamical horizons [22], Kerr and
Kerr-Newman black holes [23,24], charged dilatonic black holes
[25] and rotating black holes in de Sitter spaces [26]. However
these involved black holes share in taking 3- or 4-dimensional
spacetimes. In this letter, by considering the Garfinkle-Horowitz—
Strominger (GHS) [27] and charged non-extremal 5-dimensional
D1-D5 black holes [28] in string theory, we once again confirm
fermions tunnelling method. It is expected that our result strength-
ens the validity and power of the method.

The letter is outlined as follows. In Section 2, we begin with our
studies by applying fermions tunnelling method to study Hawking
radiation of Dirac particles across the GHS black hole. Section 3
is focus on fermions tunnelling from the charged non-extremal
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5-dimensional D1-D5 black hole. Section 4 ends up with some
conclusions and discussions.

2. Fermions tunnelling from GHS black hole

In this section, we are devoted to study Hawking radiation of
Dirac particles across the horizon of the GHS black hole in string
theory by using fermions tunnelling method. The GHS black hole
is a member of a family of solutions to low energy string theory
described by the action
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where ¢ is the dilaton field and F,, is the maxwell field associ-
ated with a U(1) subgroup of Eg x Eg or Spin(32)/Z. The GHS
black hole in the string frame is then given by
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Here ¢¢ is the asymptotic constant value of the dilaton field. For
Q2 < 2e=2%0M2, the metric (2) describes a black hole with an
event horizon located at r, = 2Me®0,

Now we focus on studying fermions tunnelling from the GHS
black hole. The motion equation of Dirac fields ¥ in the curved
spacetimes satisfies the following covariant Dirac equation as
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where D,L =9d, + %I}‘fﬁ Yyp is the spin covariant derivative,
Yup = 47T [¥%, ¥#1 and m is the mass of the emitted particles. The
matrices y* is determined by {y*, yV} =2g*¥ x I, where I is the
identity matrix. In our case, we choose the matrices y* for the
GHS spacetime taking the form as
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and the ¢! (i=1,2,3) are the Pauli matrices, which are respec-

tively described by
1 01 2 0 —i 3 1 0
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Dirac fields with the spin 1/2 have two spin states, that is the
spin up and spin down states. When measuring the spin states
along the r direction, the spin up state takes the same direction
as r, but the spin down case has the opposite direction. In this
letter, we only consider Dirac particles with the spin up without
loss of generality, because after a manner fully analogous to the
spin up case the same result will be present for Dirac particles
with the spin down. Now we employ the following ansatz for Dirac
particles with the spin up
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where &; = (;) is the eigenvector of the matrix o3, and the cor-
responding eigenvalue is 1, which describes Dirac particles with
the spin up. Applying the WKB approximation, and inserting the
ansatz (6) into the covariant Dirac equation (3), and then dividing
by the exponential term and multiplying by h, the resulting equa-
tions to leading order in f take the forms as
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Here the contributions of the derivatives A and B and the compo-
nents I’l‘fﬂ X«p have already been neglected to the lowest order in
WKB approximation due to the fact that they are all of order O(h).
To carry out the separation of variables for the above equations,
considering the symmetries of the GHS spacetime we employ the
ansatz
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where £ is the energy of the emitted Dirac particle. Near the hori-
zon, substituting the ansatz (11) into Egs. (7), (8), (9) and (10)
yields
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where f, and h, denote a derivative with respect to r. Careful
analysis on the above equations, we find J must be a complex
function, which means it will yield a contribution to the imaginary
part of the action. However further studying shows that the con-
tribution of 7 is completely the same for both the outgoing and
ingoing solutions, and therefore its total contribution to the tun-
nelling rate is cancelled out when dividing the outgoing probability
by the ingoing probability. Then it is no need to solve the equa-
tions about the complex function 7. Now our attention should be
focus on the radial function W. From Egs. (12) and (14), there will
be a non-trivial solution for A and B if and only if the determinant
of the coefficient matrix vanishes, which results
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Integrating the pole at the horizon of the GHS black hole as in
Refs. [16,17], we have
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In Eq. (17), the +/— sign corresponds to the outgoing/incoming so-

lutions. The WKB approximation tells us the tunnelling probability

is related to the imaginary part of the action as P = exp[—% Im 1],

where I is the action of particles across the black hole horizon. Set

h to unity, and the overall tunnelling rate can be written as
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