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We have analyzed the exact behavior of the polarization vector of a linearly polarized electromagnetic
shock wave upon crossing a gravitational sandwich wave, by using Einstein’s theory of general relativity.
The Faraday rotation in the polarization vector of the electromagnetic field is induced in this nonlinear
process. We show that the Faraday’s angle highly depends on the electromagnetic parameter, gravitational
parameter and the width of the gravitational sandwich wave.
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1. Introduction

Colliding waves in General Relativity is a well-known subject
by now [1] and it constitutes one of the nonlinear interaction ef-
fects of the Einstein’s theory of relativity. As an example, we will
consider the problem of colliding electromagnetic (em) wave with
a gravitational shock wave. This problem was studied long time
ago [2] and later on it was extended by introducing a second
boundary on the gravitational wave (GW) so that it turns into a
gravitational sandwich wave (GSW) [3]. Under this condition the
em wave will be crossing a region with a GW pulse of finite du-
ration. The geometry of GSW has a curved, bounded region in one
null direction and are infinitely extended, otherwise. The origin of
GSW may be attributed to the gravitational explosions emitting in-
termittent bursts of radiation.

The rotation of the plane of polarization of em waves has
been studied extensively in the literature. For example in astro-
physics [4–6] where detecting GWs through their interaction with
light from distant sources is an interesting and important topic.
Concerning the rotation of the plane of polarization of em waves
it is worth to mention the studies done in [7]. In Ref. [7] they
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use the post-Minkowskian solution of the linearized Einstein field
equations. It is shown that, the rotation angle of the plane of em
waves is a boundary effect (geometric rotation) which vanishes
for localized (astrophysical) GWs and is non-zero, but neverthe-
less negligible, for cosmological GWs. Also it is mentioned that
the detection of GWs through the rotation of plane of polarization
of light from distant sources is not feasible with technology cur-
rently available or foreseeable in the near future. However in [8]
a prototype GW detector has been constructed for observations at
100 MHz where a resonance effect is used to improve the sensitiv-
ity by a factor of ∼2000 over a narrow bandwidth. In Ref. [8] they
also suggested possible technological pathways for improving the
sensitivity.

Recall that Faraday rotation for GWs has been studied by some
authors [9–11]. For example, Ruggiero and Tartaglia [12] have stud-
ied the gravitational Faraday rotation, on linearly polarized light
rays emitted by a pulsar, orbiting another compact object. In their
paper they have obtained a formula which relates the rotation an-
gle to the orbital phase of the emitting pulsar, as well as to the
parameters describing its orbit and to the orientation of the angu-
lar momentum of the binary companion.

Recently, Halilsoy and Gurtug [13] have considered the problem
of collision of a linearly polarized shock em wave with both a cross
polarized impulsive and shock GWs. As a result of this nonlinear
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Fig. 1. The space–time diagram describes the collision of a plane of em wave propagating in one of the incoming regions and a plane GSW propagating in the other incoming
region. The singular hypersurface occurs when F G + cos2 av = 1 in the interaction region.

process a detectable Faraday rotation in the polarization vector of
the em field is induced which lead them to propose a method that
renders indirect detection of strong GWs. This method is based on
the reflection of a linearly polarized em shock wave from a cross
polarized impulsive and shock GW. Therefore it is possible to probe
controllable em waves in sensing the passing of a strong GW.

In this Letter we will consider the interaction of linearly polar-
ized plane em wave with a cross polarized GSW. Again this highly
nonlinear process induces a Faraday rotation in the polarization
vector of the em field. We will analyze the exact behavior of the
polarization vector of the em wave upon encountering with GSW.
This is done by studying the effect of em parameters, gravitational
parameter, and the width of the GSW on the Faraday’s angle.

The Letter is organized as follows: In Section 2, we review the
exact solution of electromagnetic wave crossing a GSW. In Sec-
tion 3, we present the calculation of Faraday rotation. Next, we
plot Faraday’s angle and discuss their results. Finally, in Section 4,
we draw our conclusions.

2. Electromagnetic wave crossing a gravitational sandwich wave

The interaction of a linearly polarized plane em wave with a
cross polarized GSW that propagate in the opposite direction in
each of the incoming regions is illustrated in Fig. 1.

The incoming region III (v > 0, u < 0) consists of a linearly po-
larized plane em wave described by the line element

ds2 = 2 du dv − H2(v)
(
dx2 + dy2), (1)

where

H(v) = cos avθ(v), (2)

with θ(v) the unit step function and a is the energy (frequency)
constant of the em wave described by the Ricci tensor component

Φ22 = a2θ(v). (3)

The incoming region II (v < 0, u > 0) contains a plane GSW de-
scribed by

ds2 = 2 du dv − (F dx)2 − (G dy)2, (4)

where

F (u) = cosh bŨ + b(sinh bu0)(u − u0)θ(u − u0),

G(u) = cos bŨ − b(sin bu0)(u − u0)θ(u − u0), (5)

in which b represents the frequency of the GSW, and Ũ is given as

Ũ (u) = uθ(u) − (u − u0)θ(u − u0), (6)

where u0 > 0 is the constant defining the width of the GSW. In an
appropriate null tetrad the only nonvanishing Weyl curvature is

Ψ4(u) = b2[θ(u − u0) − θ(u)
]
. (7)

This shows that for 0 < u < u0 we have a constant curvature zone
which vanishes elsewhere. It is seen that in region III the em field
develops a fold singularity at v = π/2a. Thus, in the interaction re-
gion (u > u0, v > 0), we are confined in a region av < π/2, u > u0
to study the Faraday rotation. Before going to the interaction region
let us transform the (x, y) axes to align them along with (x, y) by
rotating the axes by an angle α. As a result a cross polarization
term will rise in Eq. (4).

At, u = 0 = v an incoming em wave from left encounters the
GSW from right developing a space–time region described by line
element given in Rosen form as

ds2 = 2e−M du dv − e−U [(
eV dx2 + e−V dy2) cosh W

− 2 sinh W dx dy
]
. (8)

In the interaction region, we adapt the exact solution given by
[2,3];

e−U = F G − 1 + H2,

e2V = F 2 cos2(α/2) + G2 sin2(α/2)

F 2 sin2(α/2) + G2 cos2(α/2)
,

e−M = H(F G)1/2eU/2,

sinh W = 1

2

(
F 2 − G2

F G

)
sinα,
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