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First we contemplate the operational definition of space–time in four dimensions in light of basic
principles of quantum mechanics and general relativity and consider some of its phenomenological
consequences. The quantum gravitational fluctuations of the background metric that comes through
the operational definition of space–time are controlled by the Planck scale and are therefore strongly
suppressed. Then we extend our analysis to the braneworld setup with low fundamental scale of
gravity. It is observed that in this case the quantum gravitational fluctuations on the brane may become
unacceptably large. The magnification of fluctuations is not linked directly to the low quantum gravity
scale but rather to the higher-dimensional modification of Newton’s inverse square law at relatively large
distances. For models with compact extra dimensions the shape modulus of extra space can be used as
a most natural and safe stabilization mechanism against these fluctuations.

© 2008 Elsevier B.V.

1. Introduction

From the inception of quantum mechanics the physical quanti-
ties are usually understood to be observable, that is, they should
be specified in terms of real or Gedanken measurements per-
formed by well-prescribed measuring procedures. The concept of
measurement has proved to be a fundamental notion for revealing
the genuine nature of physical reality [1]. Space–time represent-
ing a frame in which everything takes place is one of the most
fundamental concepts in physics. The importance of operational
definition of physical quantities gives a strong motivation for a
critical view how one actually measures the space–time geome-
try [2,3]. The first natural question in this way is to understand
to what maximal precision can we mark a point in space by plac-
ing there a test particle. Throughout this Letter we will use system
of units h̄ = c = 1. In the framework of quantum field theory a
quantum takes up at least a volume, δx3, defined by its Comp-
ton wavelength δx � 1/m. Not to collapse into a black hole, gen-
eral relativity insists the quantum on taking up a finite amount
of room defined by its gravitational radius δx � l2P m. Combining
together both quantum mechanical and general relativistic require-
ments one finds

δx � max
(
m−1, l2P m

)
. (1)

From this equation one sees that a quantum occupies at least the
volume ∼l3P . Therefore in the operational sense the point can-
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not be marked to a better accuracy than ∼l3P . As any measure-
ment we can perform (real or Gedanken) is based on the using
of quanta, from Eq. (1) one infers that we can never probe a
length to a better accuracy than ∼lP . Since our understanding of
time is tightly related to the periodic motion along some length
scale, this result implies in general an impossibility of space–
time distance measurement to a better accuracy than ∼lP . This
point of view was carefully elaborated in [3]. This apparently triv-
ial conclusion encountered serious bias when it was originally
suggested by Mead [4]. Starting from the 1980s the operational
definition of space–time attracted considerable continuing interest
[5–10].

Our fundamental theories of physics involve huge hierarchies
between the energy scales characteristic of gravitation E P =
1/

√
G N ∼ 1028 eV and particle physics EEW ∼ 1 TeV. In the atomic

and subatomic world therefore, gravity is so weak as to be neg-
ligible. This is one reason gravity is not included as part of the
Standard Model of particle physics. But when energy scale ap-
proaches the Planck one gravity enters the game. The question
of operational definition of space–time becomes particularly in-
teresting and important in regard with the higher-dimensional
theories with low quantum scale of gravity (close to the elec-
troweak scale). First we summarize different approaches for op-
erational definition of Minkowskian space–time that enables one
to estimate the rate of quantum-gravitational fluctuations of the
background metric. Then we address some of the implications
of these fluctuations. Having discussed the case of 4D space–
time, we generalize the operational definition to the brane-
induced space–time and consider its phenomenological conse-
quences.
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2. Károlyházy uncertainty relation

2.1. Approach 1

For space–time measurement an unanimously accepted method
one can find in almost every textbook of general relativity consists
in using clocks and light signals [11]. Let us consider a light-clock
consisting of a spherical mirror inside which light is bouncing. That
is, a light-clock counts the number of reflections of a pulse of light
propagating inside a spherical mirror. Therefore the precision of
such a clock is set by the radius of the clock ∼rc . It is clear that
physically the coordinate system is defined only by explicitly carry-
ing out the space–time distance measurements. Let us consider the
construction of a coordinate system for a time interval t and with
a spatial fineness δx in a Minkowski space–time [10]. Since a clock
must be localized in a region with the size δx, the clock inevitably
has a momentum of the order δp ∼ 1/δx, obtained from the uncer-
tainty relation of quantum mechanics. Thus the clock moves with
a finite velocity of order δv ∼ 1/mδx, where m denotes the mass
of the clock. This implies that the coordinate system will be de-
stroyed by the quantum effect in a finite period δx/δv ∼ m(δx)2.
This period must be larger than the time interval t of the coordi-
nate. Hence we obtain

t � m(δx)2. (2)

This gives a lower bound for the clock mass m for given t and δx.
From Eq. (2), we need clock with a larger mass to construct a finer
coordinate system. However there is an upper bound on the clock
mass for no clock should become a black hole. Thus the clock’s
Schwarzschild radius should not exceed the localization region of
the clock:

l2P m � δx. (3)

The clock mass can be chosen arbitrary if it satisfies Eq. (2) and
Eq. (3). Combining Eqs. (2), (3) one gets

l2P t � (δx)3. (4)

Taking note that our light-clock having the size δx cannot mea-
sure the time to a better accuracy than δt = δx one arrives at the
equation

δtmin � t2/3
P t1/3. (5)

Eq. (5) was first obtained by Károlyházy in 1966 and was subse-
quently analyzed by him and his collaborators in much detail [12].
Notice that throughout this discussion the clock parameters allow-
ing maximum precision in measuring the length scale l (that is,
the optimal clock parameters) are as follows

rc � l2/3
P l1/3, m � l1/3

l4/3
P

. (6)

2.2. Approach 2

It is instructive to take into account gravitational time delay
of the clock [13]. After introducing the clock the metric takes the
form

ds2 =
(

1 − 2l2P m

r

)
dt2 −

(
1 − 2l2P m

r

)−1

dr2 − r2 dΩ2.

The time measured by this clock is related to the Minkowskian
time as [11]

t′ =
(

1 − 2l2P m

rc

)1/2

t.

From this expression one sees that the disturbance of the back-
ground metric to be small, the size of the clock should be much

greater than its gravitational radius rc � 2l2pm. Under this assump-
tion for gravitational disturbance in time measurement one finds

t′ =
(

1 − l2P m

rc

)
t.

Since we are using light-clock its mass cannot be less than π/rc ,
which by taking into account that the size of the clock determining
its resolution time represents in itself an error during the time
measurement gives

δt = 2rc + π
tt2

P

r2
c

,

which after minimization with respect to rc leads to Eq. (5).
The final result in the above approaches is the same Eq. (5).

Nevertheless the second approach strongly discourages to take the
optimal size of the clock to be close to its gravitational radius (6).
For the optimal parameters of the clock in measuring the space–
time distance l one finds

rc � l2/3
P l1/3, m � 1

rc
.

3. Field theory view

Effective quantum field theory with built in IR and UV cutoffs
satisfying the black-hole entropy bound leads to Eq. (5), where l
and δl play the roles of IR and UV scales respectively [14]. For an
effective quantum field theory in a box of size l with UV cutoff Λ

the entropy S scales as

S ∼ l3Λ3.

That is, the effective quantum field theory counts the degrees of
freedom simply as the numbers of cells Λ−3 in the box l3. Never-
theless, considerations involving black holes demonstrate that the
maximum entropy in a box of volume l3 grows only as the area of
the box [15]

SBH �
(

l

lP

)2

.

So that, with respect to the Bekenstein bound [15] the degrees
of freedom in the volume should be counted by the number of
surface cells l2P . A consistent physical picture can be constructed
by imposing a relationship between UV and IR cutoffs [14]

l3Λ3 � SBH �
(

l

lP

)2

. (7)

Consequently, one arrives at the conclusion that the length l, which
serves as an IR cutoff, cannot be chosen independently of the UV
cutoff, and scales as Λ−3. Rewriting this relation wholly in length
terms, δl ≡ Λ−1, one arrives at Eq. (5). Is it an accidental coinci-
dence? Indeed not. The relation (7) can be simply understood from
Eq. (5). The IR scale l cannot be given to a better accuracy than
δl � l2/3

P l1/3. Therefore, one cannot measure the volume l3 to a bet-
ter precision than δl3 � l2P l and correspondingly maximal number
of cells inside the volume l3 that may make an operational sense
is given by (l/lP )2. Thus the Károlyházy relation implies the black-
hole entropy bound given by Eq. (7). These ideas lead to the far
reaching holographic principle for an ultimate unification that may
perhaps be achieved when the basic aspects of quantum theory,
particle theory and general relativity are combined [16].

4. Energy density of the fluctuations

Károlyházy uncertainty relation naturally translates into the
metric fluctuations, as if it was possible to measure the metric pre-
cisely one could estimate the length between two points exactly.
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