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We study the duality of the supersymmetric self-dual and Maxwell–Chern–Simons theories coupled to
a fermionic matter superfield, using a master action. This approach evades the difficulties inherent to
the quartic couplings that appear when matter is represented by a scalar superfield. The price is that
the spinorial matter superfield represents a unusual supersymmetric multiplet, whose main physical
properties we also discuss.

© 2009 Elsevier B.V.

1. Introduction

Duality is an important phenomenon in quantum field the-
ory allowing to relate two different theories. One example in
(2 + 1)D [1,2] is the equivalence between the self-dual (SD) model,
which does not possess gauge invariance, and the gauge-invariant
Maxwell–Chern–Simons (MCS) model [3]. Different aspects of this
equivalence were studied in the literature, see for example [4–11].
The most important results of these papers were to establish the
mapping between a massive Thirring model and the Maxwell–
Chern–Simons theory, and between the self-dual model and the
Maxwell–Chern–Simons theory. The equivalence was also studied
in the supersymmetric counterparts of the SD and MCS models,
both in the free case [12] as well as in the presence of interactions
with a scalar matter superfield [13]. However, as we will argue
shortly, there remains some delicate intricacies which motivated
us to reexamine the duality in the supersymmetric case.
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In the present decade, a considerable interest has been de-
voted to the study of field theories in noncommutative spacetime
and the possibility of Lorentz symmetry violation, mainly due to
their relevance to quantum gravity. In this context, the duality in
a noncommutative spacetime was considered in [14], and in the
presence of Lorentz violation in [15].

The duality between the models can in principle be proved
within two frameworks. The first of them is the gauge embed-
ding method [10,13], whose essence consists in the extension of
the self-dual model to a gauge theory by adding to its Lagrangian
carefully chosen terms that vanish on-shell. The equivalence of the
resulting gauge model and the starting SD theory can be seen by
comparing their equations of motion, and can also be tested at the
quantum level. The second framework is the master action method,
used, for example, in [2,9], based on some primordial action (the
master action) involving both the MCS and SD fields, coupled to
some matter. Integration of this master action over the MCS field
yields the SD action, whereas integration over the SD produces the
MCS action, with appropriate couplings to the matter in both cases.
Proceeding one step further, one can integrate over the remain-
ing SD field in the first case, or over the MCS field in the second,
finding the same effective self-interaction for the matter in both
situations.
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When the SD field is coupled to a bosonic matter, one compli-
cation arises, in the sense that the model is actually equivalent to
a “modified” MCS theory, with a field-dependent factor in front of
the Maxwell term [10]. The source of this complication is essen-
tially the appearance of quartic vertices involving the matter and
the vector fields. When considering the duality in the supersym-
metric case, the most natural matter supermultiplet is represented
by a scalar superfield, which also couples to the vector (fermionic)
superfields with a quartic vertex, so the same difficulty arises: the
supersymmetric SD model is equivalent to a modified MCS the-
ory [13]. The presence of the quartic vertices also precludes an
extension of the proof of the duality for noncommutative theories
(which, however, have been studied in the context of the Seiberg–
Witten map, see, for example, [16,17]). One might wonder whether
an interaction with a fermionic superfield, which does not induce
a quartic vertex in the classical action, could make the study of
the duality more transparent, and the aim of this work is to show
that this is so, at least in the commutative case. The price to pay is
that the fermionic matter superfield we have to introduce in such
a study describes a non-minimal supersymmetric multiplet, involv-
ing four bosonic and four fermionic degrees of freedom.

The structure of this Letter looks as follows. In Section 2, we
present the master action, and use the equations of motion to es-
tablish the duality at the classical level. In Section 3, we study
the duality at the quantum level, by inspecting the generating of
the SMCS and SSD theories. All this work is made for quite gen-
eral couplings; some particular cases are discussed in Section 4. In
Section 5, the physical content of the fermionic matter superfield
introduced by us is made explicit. In the Summary, the results are
discussed; in particular, we comment on the possible extension of
our work to the noncommutative spacetime.

2. The duality at the classical level

As a first step, we introduce the following master Lagrangian
describing the interaction of a spinorial matter superfield Ψ α with
the spinor superfields fα (which will be further identified with the
self-dual superfield) and Aα (which will be further identified with
the Maxwell–Chern–Simons superfield),

Lmaster = −m2

2
f α fα + mf αWα + m

2
AαWα

+ kα fα + jα Aα + LM(Ψ ), (1)

where LM(Ψ ) is the quadratic Lagrangian for the spinor matter
superfield Ψ α ; jα and kα are currents depending on this super-
field. Explicit forms for LM(Ψ ) and the currents will be presented
later, at the moment, we can say that jα is necessarily conserved
(Dα jα = 0) due to gauge invariance. Here Wα ≡ 1

2 Dβ Dα Aβ is the
gauge-invariant superfield strength constructed from the super-
field Aα . The Lagrangian Lmaster is the natural superfield general-
ization of the one used in [9], with the notations and conventions
of [18].

The equations of motion for the Aα and f α superfields derived
from Eq. (1) can be used to obtain the duality at the classical level.
Varying the action

∫
d5z Lmaster with respect to f α we obtain

fα = 1

m2
kα + 1

m
Wα, (2)

which, inserted in Eq. (1), yields Lmaster = LSMCS, with

LSMCS = 1

2
W αWα + m

2
AαWα − α

4

(
Dα Aα

)2

+
(

jα + 1

2m
Dβ Dαkβ

)
Aα + 1

2m2
kαkα + LM(Ψ ). (3)

This last Lagrangian describes the supersymmetric Maxwell–Chern–
Simons (SMCS) field coupled to the matter through the “mini-
mal” coupling Aα jα , plus a “magnetic” coupling 1

2m Aα Dβ Dαkβ =
1
m W αkα , and a Thirring-like self-interaction 1

2m2 kαkα of the spino-
rial matter superfield.

Varying the master action with respect to Aα provides us with

Wα + Ωα + jα = 0, (4)

where Ωα ≡ (1/2)Dβ Dα fβ . At this point, we recall the projectors
on the transversal and longitudinal parts of a fermionic super-
field ηα ,

ηα‖ = −Dα Dβ 1

2D2
ηβ, ηα⊥ = Dβ Dα 1

2D2
ηβ, (5)

so that Dαη⊥
α = 0. The explicit form of the transversal projector in

Eq. (5) allows us to rewrite Eq. (4) as

A⊥
α = − f ⊥

α − 1

mD2
jα. (6)

Substituting Eqs. (6) and (4) into the master Lagrangian, and taking
into account that, if ηα is transversal, ηαξα = ηαξ⊥

α for any ξα , we
obtain Lmaster = LSSD, with

LSSD = −m

2
f αΩα − m2

2
f α fα + (

kα − jα
)

fα

− 1

2
jα

1

mD2
jα + LM(Ψ ). (7)

This Lagrangian describes the dynamics of a supersymmetric self-
dual (SSD) superfield which, besides of the “minimal” coupling
to the current kα , is also coupled in a non-local way to the cur-
rent jα . Moreover, a non-local Thirring-like term for the jα shows
up.

Classically, the Lagrangians in Eqs. (3) and (7) are equivalent,
thus establishing the duality between these SMCS and SSD models
at the level of equations of motion. Indeed, we can find an ex-
plicit mapping between the superfields and currents of the SMCS
theory to their counterparts in the SSD model, such that the cor-
responding equations of motion are mapped one to the other. The
equations of motion derived from the SSD Lagrangian in Eq. (7)
can be cast as

mΩα + m2 fα + jα − kα = 0, (8)

and

δ

δΨ β

∫
d5z LM + ∂ jα

∂Ψ β

(
− f ⊥

α − 1

mD2
jα

)
+ ∂kα

∂Ψ β
fα = 0. (9)

Using the projection operators in Eq. (5), we split Eq. (8) in the
longitudinal,

m2 f ‖
α = k‖

α, (10)

and transversal parts,

mΩ⊥
α + m2 f ⊥

α + jα − k⊥
α = 0. (11)

Hereafter, we omit the ⊥ in the current j since we know it is
always transversal. We see that the longitudinal part of f is not
dynamical, but algebraically related to the longitudinal part of kα .

The equations of motion derived from the SMCS Lagrangian in
Eq. (3) read,

1

2
Dβ DαWβ + mWα + jα + D2

m
k⊥
α = 0, (12)
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