

Available online at www.sciencedirect.com



PHYSICS LETTERS B

Physics Letters B 663 (2008) 66-72

www.elsevier.com/locate/physletb

## Heavy-quark contributions to the ratio $F_L/F_2$ at low x

Alexey Yu. Illarionov<sup>a</sup>, Bernd A. Kniehl<sup>b,\*</sup>, Anatoly V. Kotikov<sup>b,1</sup>

<sup>a</sup> Scuola Internazionale Superiore di Studi Avanzati, Via Beirut, 2–4, 34014 Trieste, Italy

<sup>b</sup> II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

Received 9 January 2008; received in revised form 6 February 2008; accepted 7 February 2008

Available online 18 March 2008

Editor: A. Ringwald

#### Abstract

We study the heavy-quark contribution to the proton structure functions  $F_2^i(x, Q^2)$  and  $F_L^i(x, Q^2)$ , with i = c, b, for small values of Bjorken's x variable at next-to-lading order and provide compact formulas for their ratios  $R_i = F_L^i/F_2^i$  that are useful to extract  $F_2^i(x, Q^2)$  from measurements of the doubly differential cross section of inclusive deep-inelastic scattering at DESY HERA. Our approach naturally explains why  $R_i$  is approximately independent of x and the details of the parton distributions in the low-x regime.

PACS: 12.38.-t; 12.38.Bx; 13.66.Bc; 13.85.Lg

Keywords: Quantum chromodynamics; Deep-inelastic scattering; Structure functions; Differential cross sections

### 1. Introduction

The totally inclusive cross section of deep-inelastic lepton-proton scattering (DIS) depends on the square *s* of the centre-of-mass energy, Bjorken's variable  $x = Q^2/(2pq)$ , and the inelasticity variable  $y = Q^2/(xs)$ , where *p* and *q* are the four-momenta of the proton and the virtual photon, respectively, and  $Q^2 = -q^2 > 0$ . The doubly differential cross section is parameterized in terms of the structure function  $F_2$  and the longitudinal structure function  $F_L$ , as

$$\frac{d^2\sigma}{dx\,dy} = \frac{2\pi\alpha^2}{x\,Q^4} \left\{ \left[ 1 + (1-y)^2 \right] F_2\left(x,\,Q^2\right) - y^2 F_L\left(x,\,Q^2\right) \right\},\tag{1}$$

where  $\alpha$  is Sommerfeld's fine-structure constant. At small values of *x*, *F*<sub>L</sub> becomes non-negligible and its contribution should be properly taken into account when *F*<sub>2</sub> is extracted from the measured cross section. The same is true also for the contributions *F*<sup>*i*</sup><sub>2</sub> and *F*<sup>*i*</sup><sub>L</sub> of *F*<sub>2</sub> and *F*<sub>L</sub> due to the heavy quarks *i* = *c*, *b*.

Recently, the H1 [1–3] and ZEUS [4–6] Collaborations at HERA presented new data on  $F_2^c$  and  $F_2^b$ . At small x values, of order 10<sup>-4</sup>,  $F_2^c$  was found to be around 25% of  $F_2$ , which is considerably larger than what was observed by the European Muon Collaboration (EMC) at CERN [7] at larger x values, where it was only around 1% of  $F_2$ . Extensive theoretical analyses in recent years have generally served to establish that the  $F_2^c$  data can be described through the perturbative generation of charm within QCD (see, for example, the review in Ref. [8] and references cited therein).

In the framework of Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) dynamics [9], there are two basic methods to study heavy-flavour physics. One of them [10] is based on the massless evolution of parton distributions and the other one on the photon–

<sup>6</sup> Corresponding author.

E-mail addresses: illario@sissa.it (A.Yu. Illarionov), kniehl@desy.de (B.A. Kniehl), kotikov@theor.jinr.ru (A.V. Kotikov).

<sup>&</sup>lt;sup>1</sup> On leave of absence from the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia.

gluon fusion (PGF) process [11]. There are also some interpolating schemes (see Ref. [12] and references cited therein). The present HERA data on  $F_2^c$  [2,3,5,6] are in good agreement with the modern theoretical predictions.

In earlier HERA analyses [1,4],  $F_L^c$  and  $F_L^b$  were taken to be zero for simplicity. Four years ago, the situation changed: in the ZEUS paper [5], the  $F_L^c$  contribution at next-to-leading order (NLO) was subtracted from the data; in Refs. [2,3], the H1 Collaboration introduced the reduced cross sections

$$\tilde{\sigma}^{i\bar{i}} = \frac{xQ^4}{2\pi\alpha^2[1+(1-y)^2]} \frac{d^2\sigma^{i\bar{i}}}{dx\,dy} = F_2^i(x,Q^2) - \frac{y^2}{1+(1-y)^2} F_L^i(x,Q^2)$$
(2)

for i = c, b and thus extracted  $F_2^i$  at NLO by fitting their data. Very recently, a similar analysis, but for the doubly differential cross section  $d^2\sigma^{i\bar{i}}/(dx \, dy)$  itself, has been performed by the ZEUS Collaboration [6].

In this Letter, we present compact low-*x* approximation formulae for the ratio  $R_i = F_L^i/F_2^i$  at leading order (LO) and NLO, which greatly simplify the extraction of  $F_2^i$  from measurements of  $d^2\sigma^{i\bar{i}}/(dx \, dy)$ .

Low-x approximations are a topic of old vintage: Ralston's pocket partonometer represents a fast analytic algorithm producing asymptotic low-x estimates for the parton distribution functions (PDFs) of the sea-quarks and the gluon [13]; approximate low-x relations between the gluon PDF and  $F_L$ , without heavy-quark contributions, were elaborated at LO [14] and NLO [15]. In the large- $Q^2$  region,  $F_L^i$  is known at next-to-next-to-leading order [16].

#### 2. Master formula

We now derive our master formula for  $R_i(x, Q^2)$  appropriate for small values of x, which has the advantage of being independent of the PDFs  $f_a(x, Q^2)$ , with parton label  $a = g, q, \bar{q}$ , where q generically denotes the light-quark flavours. In the low-x range, where only the gluon and quark-singlet contributions matter, while the non-singlet contributions are negligibly small, we have<sup>2</sup>

$$F_k^i(x, Q^2) = \sum_{a=g,q,\bar{q}} \sum_{l=+,-} C_{k,a}^l(x, Q^2) \otimes x f_a^l(x, Q^2),$$
(3)

where  $l = \pm$  labels the usual + and - linear combinations of the gluon and quark-singlet contributions,  $C_{k,a}^l(x, Q^2)$  are the DIS coefficient functions, which can be calculated perturbatively in the parton model of QCD,  $\mu$  is the renormalization scale appearing in the strong-coupling constant  $\alpha_s(\mu)$ , and the symbol  $\otimes$  denotes convolution according to the usual prescription,  $f(x) \otimes g(x) = \int_x^1 (dy/y) f(y)g(x/y)$ . Massive kinematics requires that  $C_{k,a}^l = 0$  for  $x > b_i = 1/(1 + 4a_i)$ , where  $a_i = m_i^2/Q^2$ . We take  $m_i$  to be the solution of  $\overline{m_i}(m_i) = m_i$ , where  $\overline{m_i}(\mu)$  is defined in the modified minimal-subtraction ( $\overline{\text{MS}}$ ) scheme.

Exploiting the low-x asymptotic behaviour of  $f_a^l(x, Q^2)$  [17,18],

$$f_a^l(x, Q^2) \xrightarrow{x \to 0} \frac{1}{x^{1+\delta_l}} \tilde{f}_a^l(x, Q^2), \tag{4}$$

where the rise of  $\tilde{f}_a^l(x, Q^2)$  as  $x \to 0$  is less than any power of x, Eq. (3) can be rewritten as

$$F_{k}^{i}(x,Q^{2}) \approx \sum_{a=g,q,\bar{q}} \sum_{l=+,-} M_{k,a}^{l} (1+\delta_{l},Q^{2}) x f_{a}^{l}(x,Q^{2}),$$
(5)

where

$$M_{k,a}^{l}(n,Q^{2}) = \int_{0}^{b_{l}} dx \, x^{n-2} C_{k,a}^{l}(x,Q^{2})$$
(6)

is the Mellin transform, which is to be analytically continued from integer values n to real values  $1 + \delta_l$ .

As demonstrated in Refs. [19,20], HERA data support the modified Bessel-like behavior of PDFs at small x values predicted in the framework of the so-called generalized double-asymptotic scaling regime. In this approach, one has  $M_{k,a}^+(1, Q^2) = M_{k,a}^-(1, Q^2)$  if  $M_{k,a}^l(n, Q^2)$  are devoid of singularities in the limit  $\delta_l \to 0$ , as we assume for the time being. Such singularities actually occur at NLO, leading to modifications to be discussed in Section 4. Defining  $M_{k,a}(1, Q^2) = M_{k,a}^{\pm}(1, Q^2)$  and using  $f_a(x, Q^2) = \sum_{l=+}^{+} f_a^l(x, Q^2)$ , Eq. (5) may be simplified to become

$$F_k^i(x, Q^2) \approx \sum_{a=g,q,\bar{q}} M_{k,a}(1, Q^2) x f_a(x, Q^2).$$
(7)

<sup>&</sup>lt;sup>2</sup> Here and in the following, we suppress the variables  $\mu$  and  $m_i$  in the argument lists of the structure and coefficient functions for the ease of notation.

Download English Version:

# https://daneshyari.com/en/article/1852374

Download Persian Version:

https://daneshyari.com/article/1852374

Daneshyari.com