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Gauge/Gravity duality as a theory of matter needs a systematic way to characterise a system. We 
suggest a ‘dimensional lifting’ of the least irrelevant interaction to the bulk theory. As an example, we 
consider the spin–orbit interaction, which causes magneto-electric interaction term. We show that its 
lifting is an axionic coupling. We present an exact and analytic solution describing diamagnetic response. 
Experimental data on annealed graphite shows a remarkable similarity to our theoretical result. We also 
find an analytic formulas of DC transport coefficients, according to which, the anomalous Hall coefficient 
interpolates between the coherent metallic regime with ρ2

xx and incoherent metallic regime with ρxx

as we increase the disorder parameter β . The strength of the spin–orbit interaction also interpolates 
between the two scaling regimes.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Overview and summary: Recently, the gauge/gravity duality 
[1–3] attracted much interests as a possible candidate for a reliable 
method to calculate strongly correlated systems. It is a local field 
theory in one higher dimensional space called “bulk”, with a few 
classical fields coupled with anti-de Sitter (AdS) gravity. Since the 
strong coupling in the boundary is dual to a weak coupling in the 
bulk, the bulk fields can be considered as local order parameters 
of a mean field theory in the bulk. It also provided a new mech-
anism for instabilities in gravity language [4] which is relevant to 
the superconductivity [5,6] and the metal insulator transition [7]. 
However, as a theory for materials, it is still in lack of one essen-
tial ingredient, a way to distinguish one matter from the others. 
Although electron–electron interaction is traded for the gravity in 
the bulk, we still need to specify lattice–electron interactions to 
characterise the system. Without it, we would not know what sys-
tem we are working for.

Naively one may try to introduce realistic lattice at the bound-
ary to mimic the reality. However, its effects are mostly irrele-
vant in the infrared (IR) limit. In strong coupling limit where no 
quasiparticle exists, no Fermi surface (FS) exists either. Actually 
in the absence of the FS, it is almost impossible to write down 
any relevant interaction term in a local field theory in higher than 
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1+1 dimension.1 Therefore non-local effect may be essential for 
any interesting physics in strongly interacting system. One inter-
esting aspect of a holographic theory is that any local interaction 
in the bulk has non-local effect in the boundary [9]. Usually one 
characterises a many body system in continuum limit by a few in-
teraction terms rather than the detail of structure. Therefore, to 
characterise a system in holographic theory, what we want to sug-
gest is the dimensional-lifting, by which we mean promoting the 
“system characterising interaction” of the boundary theory to a 
term in the bulk theory using the covariant form of the interac-
tion.

One may wonder what the gravity dual of the Maxwell the-
ory is. In condensed matter, there are two components of elec-
tromagnetic interaction. One is electron–electron interaction and 
the other is lattice–electron interaction. While the main difficulty 
is coming from the former, system is characterised by the lat-
ter. Working hypothesis is that the electron–electron interaction 
is taken care of by working in asymptotic AdS gravity. Our pur-
pose is to include the electron–lattice interaction in this holo-
graphic scheme, which is possible for two reasons. First, in any 
boundary system with a conserved global U (1) charge, we have a 
bulk Maxwell theory, which can accommodate usual electromag-
netic field as a probe or an external source. It was used to build 

1 See however ref. [8] for semi-holographic approach based on IR AdS2 and its 
virtual C F T2, which is different from ours.
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the holographic version of superconductivity mentioned above and 
also to calculate electric/thermal transport coefficients [10–13]. 
Second, we can use a relativistic theory for a non-relativistic sys-
tem. The relativistic invariance highly constrains the possible form 
of extension of interaction. A practical way to proceed is to turn 
on the interaction one by one for technically simplicity. The co-
variant form of the interaction is either scalar or top form. The 
former is trivially lifted to higher dimension, e.g., Fμν Mμν can be 
used in any dimension. Now suppose the top form of the boundary 
theory is Fd and the bulk theory already contains scalar operator 
ϕ and one form ω1. Then we have essentially two choices: ϕ dFd
and ω1 ∧ Fd to avoid the total derivative term.

To discuss the idea in more specific context, we consider 
the spin–orbit interaction in 2+1 dimensional systems. It creates 
lots of interesting phenomena including topological insulators and 
Weyl semi-metal [14–18] by changing band structures, which in 
turn causes magneto-electric phenomena [19,20] like anomalous 
Hall effect. Naively, introducing the spin–orbit interaction involve 
fermions.2 However, we can integrate out the massive fermions, 
thereby avoid dealing with fermions in our theory. Notice that 
in the absence of Fermi sea as in our strong coupling problem, 
fermions can be considered to be massive. It is well known that 
the fermions integrated out leave the Chern–Simons term A ∧ F
[21,22], which can be lifted to 4 dimension as F ∧ F ∼ E · B .3

Since it is a total derivative by itself, we have to couple it with 
an appropriate scalar operator to have a non-trivial dynamical ef-
fect. In this paper, we choose it to be the kinetic energy term 
of the axion scalar fields χI . That is our interaction term is 
qχ

∑
I=1,2 (∂χI )

2 F ∧ F , where χI was introduced to provide some 
disorder giving momentum dissipation [32]. Notice that this term 
is odd in time reversal, which is appropriate for the case where 
magnetisation is non-trivial.4

Since we want to have finite temperature, chemical potential, 
magnetic fields, and finite DC conductivity, the system should con-
tain metric, gauge fields and axion scalar fields (gμν, Aμ, χI ) as 
the minimal ingredients in the bulk. So we have to start with the 
Einstein–Maxwell-axion system. We have found an exact analytic
solution of such a non-trivially coupled system with a new inter-
action term, consequently yielding an explicit and analytic result 
for the DC conductivity using recent technology [10–12]. While the 
Hall effect is obviously connected to our system from the construc-
tion, the fully back reacted system shows diamagnetic response. 
This is because we examined metallic state at finite temperature 
and did not include spin degrees of freedom explicitly. Finally, we 
comment on the relevance of our result to experimental data. In 
[33], it was reported that graphite, once annealed to wash out 
the ferromagnetic behaviour, shows a non-linear diamagnetic re-
sponse which is very similar to our analytic result. Also it turns out 
that our analytic conductivity formulas reproduce the experimen-
tal data on the scaling relation between the non-linear anomalous 
Hall coefficients and the longitudinal resistivity. I.e. the non-linear 
anomalous Hall coefficients interpolate between the linear and 

2 The Chern–Simons term is derived from a minimal interaction ψ̄γ μψ Aμ . If we 
take non-relativistic limit first, the interaction Lagrangian is Lint = �μ · �B in the elec-
tron at rest frame, which becomes ψ̄γ μνψ Fμν in covariant form that is valid in 
any frame. When we include fermions explicitly, we have to take into account this 
issue.

3 Previously the Chern–Simons term in the bulk and its higher dimensional ana-
logue were extensively considered in holography to discuss the chiral effects or 
instability to the inhomogeneous phases [23–31].

4 In order to handle time reversal invariant case, one can consider 
qχ

∑
I=1,2 dχI ∧ A ∧ F ∼ qχ

∑
I=1,2 χI F ∧ F . One can also consider the possibility 

that qχ contains an Ising spin variable ±1 which is odd under time reversal. In this 
paper we focus on the time reversal breaking case to consider non-zero magnetisa-
tion.

quadratic dependence on the longitudinal resistivity. Considering 
that we added just one interaction term, these are unexpectedly 
rich consequences.

The model and background solution: With motivations de-
scribed above, we start from the Einstein–Maxwell-axion action 
with the Chern–Simons interaction

2κ2 S =
∫

d4x
√−g

⎧⎨
⎩R + 6

L2
− 1

4
F 2 −

∑
I=1,2

1

2
(∂χI )

2

⎫⎬
⎭

− 1

16

∫
qχ (∂χI )

2 F ∧ F + Sc , (1)

where qχ is a coupling, and κ2 = 8πG and L is the AdS radius 
and we set 2κ2 = L = 1. Sc is the counter term which is necessary 
to make the action finite. Explicit form of Sc is written in (25)
at the end of this paper. The axion (χI ) which is linear in {x, y}
direction breaks translational symmetry and hence gives an effect 
of momentum dissipation [32]. Instanton density coupled with the 
axion can generate magneto-electric property: if we add charge, 
non-trivial magnetisation is generated. The equations of motion are 
rather long so we wrote it in (26) at the end.

As ansatz to solutions, we use the following form

A = a(r)dt + 1

2
H (xdy − ydx) ,

χ1 = β x , χ2 = β y ,

(2)

with the metric ansatz

ds2 = −U (r)dt2 + dr2

U (r)
+ r2(dx2 + dy2) . (3)

From the equations of motion, we found exact solution

U (r) = r2 − β2

2
− m0

r
+ q2 + H2

4r2
+ β4 H2q2

χ

20r6
− β2 Hqqχ

6r4
,

a(r) = μ − q

r
+ β2 Hqχ

3r3
,

(4)

where μ is a free parameter interpreted as the chemical potential 
and q and m0 are determined by the condition At(r0) = U (r0) = 0
at the black hole horizon (r0). q is the conserved U (1) charge in-
terpreted as a number density at the boundary system. m0 turns 
out to be half of the energy density (9) and β is related to mo-
mentum relaxation rate

q = r0μ + 1

3
θ H with θ = β2qχ

r2
0

,

m0 = r3
0 + r2

0μ
2 + H2 − 2β2r2

0

4r0
+ θ2 H2

45r0
.

(5)

The solution (4) reproduces the dyonic black hole solution with 
momentum relaxation [12] when qχ vanishes.

Diamagnetic response: The thermodynamic potential density 
W in the boundary theory is computed by the Euclidean on-shell 
action S E of (25): S E ≡ V2W/T , V2 = ∫

dxdy using the solutions 
(2)–(3)

W = −r3
0 − 1

4r0

(
μ2r2

0 + 2β2r2
0 − 3H2

)
+ 2

3
μθ H + 7

45r0
θ2 H2.

(6)

The system temperature T is identified with the Hawking temper-
ature of the black hole,

T = 3

4π
r0 − 1

16πr3
0

(
(q − θ H)2 + H2 + 2r2

0β2
)

, (7)
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