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A hybrid model which combines γ -stable and γ -rigid collective conditions through a rigidity parameter, 
is used to study the critical point of the phase transition between spherical and axially symmetric shapes. 
The model in the equally mixed case, called X(4), exhibits properties of the Euclidean symmetry in 
four dimensions. The spectral properties of the new model are investigated in connection to the exact 
symmetry. Experimental realisation of the X(4) model is found in two N = 90 nuclei and two Pt isotopes 
in vicinity of experimentally observed critical point.
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1. Introduction

The underlying symmetry of various aspects of the nuclear sys-
tems provides a unique insight into their structure and dynamics. 
Although the nucleus is essentially a many body quantum con-
struct, it exhibits also collective features with unexpected regular-
ities. The algebraic description of the collective phenomena based 
on the geometry of the system offers useful reference concepts 
such as dynamical symmetries (DS). Typical examples of DS in nu-
clear structure are those identified in the interacting boson model 
[1] as U (6) symmetry subgroups that emerge as chains of suc-
cessive algebras: U (5), O (6), and SU (3). Each DS defines specific 
shapes and dynamical conditions in which the nuclei behave col-
lectively: spherical vibrator, axially asymmetric and symmetric ro-
tors.

As the Hamiltonian of a DS can be written in terms of Casimir 
operators of its group reduction chain, the corresponding energy 
spectrum is parameter independent and therefore serves as a ref-
erence point for realistic collective behaviour. It was found that 
this is also the case for the critical point symmetries (CPS) E(5)

[2] and X(5) [3] describing the shape phase transitions between 
U (5)–O (6), and respectively U (5)–SU (3). These are actually fitting 
descriptions provided by similarly simple shapes of the potential 

* Corresponding author.
E-mail address: rbudaca@theory.nipne.ro (R. Budaca).

surface in the geometrical Bohr model [5], which describes the 
quadrupole shapes using in total five variables, two associated to 
the nuclear shape oscillations (β and γ ) and three Euler angles θi

describing the rotational motion. Nevertheless, E(5) CPS is an exact 
realization of the Euclidean group in five dimensions [4], while the 
group theoretical structure of the X(5) CPS is not known. The lat-
ter employs two approximations, one related to the separation of 
variables and the other based on the small angles for the γ shape 
variable. The γ -rigid version of this model, called X(3) [6], how-
ever, is exactly separable and solvable. γ -rigid conditions mean a 
static γ deformation and the quantum Hamiltonian associated to 
such a case will have a different structure as per Pauli quantiza-
tion prescription [7]. Also, due to symmetry properties, rotational 
motion of the X(3) model can be described only by two Euler an-
gles and therefore the whole system can be described just by three 
variables instead of five as in the usual Bohr model. Although the 
resulted model seems rudimentary, its realistic character is actually 
supported by various experimental realisations of γ -rigid collective 
conditions [6,8–14].

The exact solvability is directly related to the symmetry proper-
ties of a system. Thus, the group theoretical interpretation of X(5)

and X(3) spectral properties is of major interest. Recently [15,16], 
it was shown that these models are partial Euclidean DS [17,18]
in the sense that a set of states satisfy exactly the associated sym-
metrical differential equation. In this Letter one will show that by 
a coherent interplay of γ -stable and γ -rigid collective conditions 
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[19,20] relating the X(5) and X(3) models, a four dimensional 
model emerges which shares similar symmetry features. Addition-
ally, a new set of states satisfying exactly the Euclidean symmetry 
is identified for all three X(D)(D = 1, 2, 3) models. Moreover, the 
rest of low lying energy states only in the four-dimensional case 
are approximate realisations of the corresponding Euclidean sym-
metry, fact which brings us closer to unveiling the symmetry group 
governing the CPS of the U (5)–SU (3) shape phase transition. In 
completion of the present study, a theoretical and phenomenologi-
cal interpretation of the new model is proposed along a handful of 
candidate nuclei.

2. Shape phase mixing

A combined axial symmetric γ -rigid and γ -soft nuclear sys-
tem can be treated by considering the following Hamiltonian 
[19,20]:

H = χ T̂r + (1 − χ)T̂ s + V (β,γ ), (1)

where

T̂r = − h̄2
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is the prolate γ -rigid kinetic energy operator [6], and
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is the same operator corresponding to the usual five-dimensional 
γ -stable Bohr Hamiltonian. Q is the angular momentum oper-
ator from the intrinsic frame of reference with Q k(k = 1, 2, 3)

denoting the operators of its projections, while B is the mass pa-
rameter. The Ising type coupling [21,22] of different behaviours 
of the γ shape variable is managed by the control parameter 
0 ≤ χ < 1 which measures the system’s γ -rigidity. The Hamil-
tonian (1) obviously acts in a mixed shape phase space be-
cause Tr is defined in terms of three curvilinear coordinates, 
while Ts in five. Therefore the integration measure of this space 
must be χ dependent in order to describe a coherent the-
ory. This deformation of the shape space metric was duly ex-
plained in Ref. [20] and basically comes down to matching 
the quantum and classical pictures of the γ -rigid/stable cou-
pling.

The aim of the paper is to study critical point nuclei, such 
that one will treat the Schrödinger equation associated to (1) as 
in case of the well known X(5) model [3], where an approxi-
mate separation of β and γ -angular variables is achieved through 
a small angle approximation and an adiabatic decoupling of β and 
γ shape fluctuations. Assuming a factorized total wave function 
�(β, γ , 	) = ξ(β)η(γ )D L

M K (	) where D L
M K are Wigner functions 

of total angular momentum L and its projections M and K on the 
body-fixed and respectively laboratory-fixed z axis, the associated 
Schrödinger equation is separated into β and γ parts [3]. The γ
equation is treated as in the usual γ -stable case [3] providing a 
wave function indexed by the angular momentum projection K
and a γ vibrational quantum number nγ . Due to this decoupling 
and the additive character of the γ excitation contribution to the 
total energy of the system, one will concentrate in what follows 
only on the K = 0 states, i.e. those from the ground and β excited 
bands. Thus, the radial-like equation for the β shape variable reads 
as:

[
− ∂2
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]
ξ(β)

+ u(β)ξ(β) = εξ(β), (4)

where ε = 2B
h̄2 E and u(β) = 2B

h̄2 V (β) are reduced energy and β

potential. In accordance to X(5) [3] and X(3) [6] critical point 
solutions, an anharmonic behaviour is considered here for the po-
tential, reflected into a square well shape:

u(β) =
{

0, β � βW ,

∞, β > βW ,
(5)

where βW indicates the position of the infinite wall. With this, 
equation (4) can be brought to a Bessel differential equation by 
the change of variable ξ(β) = βχ− 3
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The boundary condition f (βW ) = 0 gives the β energy spectrum 
in terms of the s-th zero xs,ν of the Bessel function Jν(xs,νβ/βW )

[23]. The order of the Bessel function’s zero is related to the β
vibration quantum number by nβ = s − 1. Correspondingly, the β
variable normalized wave function is then given as:

ξL,nβ (β) = Nnβ ,νβχ− 3
2 Jν(xnβ+1,νβ/βW ), (8)

where Nnβ ,ν is the normalization constant obtained from the con-
dition

βW∫
0

[
ξL,nβ (β)

]2
β4−2χdβ = 1. (9)

Note the modified integration measure which accounts for the 
shape phase mixing [20]. Another example of deformed shape 
phase space is the recently proposed collective solution with an 
energy dependent potential [24].

Finally, the total solution of the Hamiltonian (1) is given by the 
normalized and symmetrized product of angular, β and γ wave 
functions [3,25]:
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Transition rates can then be calculated by employing the general 
expression for the quadrupole transition operator,

T (E2)
μ = tβ
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]
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where t is a scaling factor. Taking into account the small angle 
approximation (cosγ ≈ 1) appropriate for γ -stable solutions, the 
�K = 0 transitions relating the ground and β excited states rel-
evant for the present study can be given in a factorized form as 
[25,26]:
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000 B
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)2

. (12)

C is the Clebsch–Gordan coefficient dictating the angular momen-
tum selection rules, while B is defined as:
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