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Dark energy, inflation and the cosmic coincidence problem
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Abstract

We show that holographic dark energy could explain why the current dark energy density is so small, if there was an inflation with a sufficient
expansion in the early universe. It is also suggested that an inflation with the number of e-folds N � 65 may solve the cosmic coincidence problem
in this context. Assuming the inflation and the power-law acceleration phase today we obtain approximate formulas for the event horizon size of
the universe and dark energy density as functions of time. A simple numerical study exploiting the formula well reproduces the observed evolution
of dark energy. This nontrivial match between the theory and the observational data supports both inflation and holographic dark energy models.
© 2008 Elsevier B.V.

PACS: 98.80.Cq; 98.80.Es; 03.65.Ud

The type Ia supernova (SN Ia) observations [1,2] strongly suggest that the current universe is in an accelerating phase, which
can be explained by dark energy (a generalization of the cosmological constant) having pressure pΛ and density ρΛ such that
ωΛ ≡ pΛ/ρΛ < −1/3. There are various dark energy models rely on exotic materials such as quintessence [3,4], k-essence [5,
6], phantom [7], and Chaplygin gas [8,9]. Being one of the most important unsolved puzzles in modern physics, the cosmological
constant problem consists of three sub-problems; why the cosmological constant is so small, nonzero, and comparable to the critical
density at the present.

In this Letter we show that, in the holographic dark energy model, an inflation with a sufficient expansion explain why the current
dark energy density is so small. We also suggest that the last problem, the cosmic coincidence problem, could be solved, if there
was an inflation with a specific expansion. Note that, in many other dark energy models, it is not easy to explain the current ratio
of dark energy density to matter energy density, because usually dark energy density and matter energy density reduce at different
rates [10] for a long cosmological time scale.

It is well known [11] that a simple combination of the reduced Planck mass MP = mP /
√

8π and the Hubble parameter H =
H0 ∼ 10−33 eV, gives a value ρΛ � M2

P H 2
0 comparable to the observed dark energy density ∼ 10−10 eV4 [2]. This interesting

coincidence, on one hand, is of the cosmic coincidence problem and, on the other hand, motivated holographic dark energy models.
The holographic dark energy models are based on the holographic principle proposed by ’t Hooft and Susskind [12–14], claiming
that all of the information in a volume can be described by the physics at the boundary of the volume. With the base on the principle,
Cohen et al. [15] proposed a relation between an UV cutoff (a) and an IR cutoff (L) by considering that the total energy in a region
of size L cannot be larger than the mass of a black hole of that size. Saturating the bound, one can obtain

(1)ρΛ = 3d2

L2a2
,
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where d is a constant. Hsu [16] pointed out that for L = H−1, the holographic dark energy behaves like matter rather than dark
energy. Many attempts [17–22] have been made to overcome this IR cutoff problem, for example, by using non-minimal coupling
to a scalar field [20,21] or an interaction between dark energy and dark matter [22–26]. Li [27,28] suggested that an ansatz for the
holographic dark energy density

(2)ρΛ = 3d2M2
P

R2
h

,

would give a correct accelerating universe, where the future event horizon (Rh) is used instead of the Hubble horizon as the IR
cutoff L.

To solve the coincidence problem many attempts have been done [24,29–34]. An interaction of dark matter [35] with dark energy
was introduced in [23,36,37]. In [32] inflation at the GUT scale with the minimal number of e-folds N � 60 was suggested as a
solution. In this Letter we suggest a solution similar to the later. One motivation to study the cosmic coincidence problem in the
context of inflationary cosmology is that if there was no inflation, there could be no ‘now’ (t0 = 1.37 × 1010 years) for the ‘why
now’ question. According to astronomical observations and cosmological theory there are at least two inflationary periods in the
history of the universe. As is well known, the first inflation at the early universe with N > 60 is need to solve the problems of the
standard big-bang cosmology. This inflation is often assumed to be related to vacuum energy of a scalar field (inflaton). The second
inflation (re-inflation) is a period of an accelerated expansion today due to dark energy. (Usually, the first inflation is related to a
phase transition of the inflaton and has a different origin from that of the re-inflation due to dark energy. In this Letter we assume this
case.) Thus, we assume that in the universe there are the inflaton, holographic dark energy, radiation and matter (mostly, cold dark
matter). We also assume that after reheating inflaton energy decays to radiation perfectly. During the first inflation holographic dark
energy is diluted exponentially. In this work we suggest that if there is holographic dark energy in the universe, the first inflation
with N � 65 leads to onset of the second inflation at the time ta = O(109) years as observed, and, hence, the inflation solves the
cosmic coincidence problem in the context of holographic dark energy.

In this Letter we consider the flat (k = 0) Friedmann universe which is favored by observations [38] and described by the metric

(3)ds2 = −dt2 + R2(t) dΩ2,

where R(t) is the scale factor. In the holographic dark energy model a typical length scale of the system with the horizon is given
by the future event horizon

(4)Rh ≡ R(t)

∞∫
t

dR(t ′)
H(t ′)R(t ′)2

= R(t)

∞∫
t

dt ′

R(t ′)
,

which is a key quantity. It is a subtle task to obtain an explicit form for Rh(t), because Rh(t) depends on the whole history of the
universe after t . To tackle this problem we divide the history of the universe into two phases; the inflation (phase 1) is followed
by phase 2 which are consecutive radiation dominated era (RDE; R(t) ∝ t1/2) and dark energy dominated power-law accelerating
era (DDE; R(t) ∝ tn, n > 1), respectively. For simplicity, we ignore the matter dominated era (MDE) as often done in an order of
magnitude estimate in cosmology. (In Appendix A, we perform a similar calculation with MDE. The main results are similar.)

1) inflation phase (ti � t < tf ).
The inflation starts at t = ti and ends at tf . The scale factor evolves in this phase as follows

(5)R(t) = Rie
Hi(t−ti ),

where Ri is the initial scale factor at t = ti and Hi = M2
i /(

√
3MP ) is the Hubble parameter with the energy scale Mi of the inflation.

Hence, the number of e-folds of expansion N ≡ Hi(tf − ti ).
2) power-law expansion phase (tf � t < ∞).
This phase consists of RDE (tf � t < ta) followed by DDE (ta � t < ∞). The universe starts to accelerate at an inflection point

t = ta , i.e., R̈(ta) = 0. We assume that the scale factor evolves in this phase as

(6)R(t) = Rie
N

(
t

tf

) 1
2
(1 + α( t

tf
)1/2

1 + α

)2n

,

where α � (tf /ta)
1/2 is a constant. The scale factor R(t) grows as t

1
2 during the RDE and as tn+ 1

2 during the DDE later. R(t)

of this form gives a smooth transition from RDE to DDE. Note that R(t) for each era is well known and can be derived from the
Friedmann equation depending on the dominant energy source. The power-law acceleration is a generic feature of DDE if d > 1.
(Alternatively, one can divide this phase into RDE and DDE and choose the scale factor as R(t) ∝ (t/tf )1/2 and R(t) ∝ (t/ta)

n

for RDE and DDE, respectively. This choice gives almost the same results except for a slightly decreasing Rh as t → ta . Thus,
we can use the specific form in Eq. (6) without loss of generality.) Since observational data favor d � 1 [39,40] and ωΛ close to
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