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Abstract

In this Letter, we analyze the viability of a vacuum Gauss—Bonnet cosmology by examining the dynamics of the homogeneous and anisotropic
background in 4 4 1 dimensions. The trajectories of the system either originate from the standard singularity or from non-standard type, the later
is characterized by the divergence of time derivative of the Hubble parameters for its finite value. At the onset, the system should relax to Einstein
phase at late times as the effect of Gauss—Bonnet term becomes negligible in the low energy regime. However, we find that most of the trajectories
emerging from the standard big-bang singularity lead to future re-collapse whereas the system beginning its evolution from the non-standard
singularity enters the Kasner regime at late times. This leads to the conclusion that the measure of trajectories giving rise to a smooth evolution
from a standard singularity to the Einstein phase is negligibly small for generic initial conditions.
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1. Introduction

Modified theories of gravity are under active consideration
at present in cosmology. Efforts are being made to mimic late
time acceleration from large scale modification of gravity with-
out resorting to exotic forms of matter dubbed dark energy
[1,2]. The extra-dimensional effects can give rise to modifi-
cation of gravity; similar effects can be induced by adding a
generic function of Ricci scalar to Einstein—Hilbert action giv-
ing rise to f(R) gravity (see Ref. [3] and references therein).
The quantum effects can also lead to higher order curvature
corrections to Einstein—Hilbert action. These corrections can be
systematically computed in perturbative regime of string theory.
Amongst all the higher derivative corrections which might arise
quantum mechanically, the Gauss—Bonnet (GB) correction has
distinguished features [4]. In this case, the equations of motion
continue to be of second order thereby ensuring the uniqueness
of their solutions. However, in 3 + 1 dimensions, the GB term
is topological in nature; it acquires dynamics only in higher
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dimensions. Nevertheless, it can influence the 4-dimensional
physics if it is coupled to a dynamically evolving scalar field(s).
The pure GB term being in the higher dimensional bulk can also
lead to modification of Einstein equations on the brane [5].

Attempts have recently been made to derive current acceler-
ation using the GB term coupled to a scalar field [6—16]. The
model exhibits remarkable property that it does not disturb the
scaling regime and can give rise to late time transition from
matter regime to late time acceleration [7,17]. This beautiful
result comes with a cost: the coupling of GB curvature invari-
ant to scalar field gets large at late times and cannot be justified
within the perturbative regime the curvature corrections are ob-
tained; the model is also under pressure from nucleosynthesis
constraint [7,17]. On the theoretical ground, these models are
faced with other serious problems related to stability against
perturbations about FRW background [13]. Similar situation is
expected to persist in the case of higher order Euler densities
coupled to scalar (dilaton/modulus) fields. Of course, one can
argue that these fields should be stabilized sufficiently early
in order to respect the nucleosynthesis constraints. It is, nev-
ertheless, important to examine the viability of Gauss—Bonnet
cosmology in general.
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In this Letter, we take a different route; we consider a vac-
uum (4 + 1)-dimensional GB cosmology in a homogeneous
and anisotropic background and study the structure of generic
singularities in the model. Though 4 + 1 theories without com-
pactification have no direct applications to our Universe, study
of their properties is important for better understanding of grav-
ity in four dimensions, showing its specific properties in com-
parison with other cases. It is known, for example, that in
five-dimensional Einstein gravity the uniqueness theorem for
a stationary black hole configurations is no longer valid [18].
Another classical example is related to the disappearance of
Mixmaster cosmological chaotic behavior in 10 + 1 dimen-
sions [19]. These results have been formulated in the framework
of Einstein gravity. The Gauss—Bonnet term can further mod-
ify traditional results known for (3 4 1)-dimensional Einstein
theory. The main goal of the present Letter is to study the modi-
fications of cosmological singularity due to Gauss—Bonnet term
in multidimensional cosmology. In the low energy regime one
might expect the system to relax to (4 + 1)-dimensional Kas-
ner geometry. We shall examine the cosmological dynamics of
the system under consideration and investigate the measure of
trajectories which might connect to Einstein phase at late times.

2. Evolution equations

We consider a (4 4+ 1)-dimensional theory with the action

S:/\/—_g(R +aR%y)dx, (1)

where RéB is the Gauss—Bonnet term
RZg = RM" Rigim — 4R Ry + R2.

In what follows we shall be interested in the dynamics of the
system described by (1) in the homogeneous and anisotropic
flat background with the metric

gik = diag(—n*(), (), b* (1), (1), d*(1)). )

This metric provides us a simplest modification of the stan-
dard geometry allowing the realization of new dynamical
regimes absent in both Einstein gravity and isotropic Gauss—
Bonnet modified Einstein theory of gravity (for a complete
survey of possible 5-dimensional cosmological backgrounds,
see Ref. [20]).

It would be convenient to introduce Hubble parameters with
respect to four spatial dimensions Hy pcq = ZZEZ In the
background described by the metric (2), the action (1) is a func-
tional of the scale factors and the lapse function along with their
time derivatives. Varying the action (1) with respect to the lapse
function n(¢) and setting n = 1 thereafter we find the constraint
equation

2H,Hy +2H,H. +2H,Hy +2HyH. +2HyHy +2H -Hy
+ 24 H,HyH-Hg =0, 3

which is the analogue of Friedmann equation in case of the
geometry given by (2). Variation of (1) with respect to scale

factors leads to the system of four dynamical equations,

2(Hp + HY) +2(H, + H?) +2(Hy + Hj) + 2Hp H.

+ 2HyHy + 2H,Hy + 8a[ (Hy + HJ)H Hy

+ (He + HZ)Hy Hy + (Hy + H7) Hy He ] = 0., “)
2(Hq + H?) +2(He + H?) +2(Hy + HJ) + 2H, H,

+2H,Hy +2H-Hy + 8 (Ha + H?)H.Hy

+ (He + HZ)Hy Hy + (Ha + Hj) Ho H:] =0, )
2(Ha + HZ) +2(Hp + HY) +2(Hy + Hj) + 2H, Hp

+2H,Hy + 2Hy Hy + e[ (Hy + H; ) Hy Hy

+(Hb+H;,2)HaHd+(Hd+Hd2)HaHb]=0, (6)
2(Hq + H2) +2(Hy + HZ) +2(He + H?)

+2H,Hy + 2H,He + 2Hy He + 8a[(Hy + HZ) Hp He

+ (Hp + Hy)HyHe + (He + HZ) Hy Hy| = 0. ()

The evolution equations, in general, look cumbersome for an-
alytical investigations. In what follows we shall investigate the
dynamical regimes of the model numerically.

3. Dynamical regimes

The presence of Gauss—Bonnet (GB) term allows some spe-
cific dynamical regimes absent in pure Einstein gravity. First
of all, the volume of a flat Universe can have local extrema
in this background. The another new feature is associated with
the possible existence of a non-standard singularity, found in
Ref. [21] (this type of singularity was also found previously in
another context in Ref. [22], similar situation can also arise in
3 4 1-dimensional cosmology with GB-term in presence of a
dynamical dilaton [23-25]). Interestingly, the GB brane worlds
with the curvature term on the brane can also give rise to this
type of singularity [26]. The non-standard singularity, under
consideration, is characterized by Hi — o0 (H; = Hy pc.q), for
finite values of Hubble parameters. It occurs when the major de-
terminant of the system (4)—(7) vanishes.

We note that the generalized Kasner regime, being the so-
lution of vacuum equation motion for Bianchi I Einstein Uni-
verse, remains intact in the low-energy regime, when Gauss—
Bonnet contribution can be neglected. This solution has the
form ds*> = —dt*> + > 1?Pi dxi2 with two known condition on
the power indices

pi+pi+pi+pi=1
p1+p2+p3+ps=1. (8)

In the high-energy regime, the Gauss—Bonnet term becomes
important. However, in 4 + 1 Universe there are no pure Gauss—
Bonnet nontrivial vacuum solutions, similar to found recently
for the (5 + 1)-dimensional case [27]. To illustrate this point,
let us consider Eq. (3). We observe that there is only one term
originating from the Gauss—Bonnet contribution (the last tern
on the LHS), so this term and the remaining Einstein contribu-
tion (first three terms of the LHS) are equal in absolute values
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