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A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor 
conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This 
phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) 
spherical symmetry about the center of the supernova and the (directional) axial symmetry around the 
radial direction. Recently it has been shown that these spatial and directional symmetries can be broken 
spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities 
in a time-dependent supernova model. Our results show that collective neutrino oscillations start at 
approximately the same radius in both the stationary and time-dependent supernova models unless there 
exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. 
Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes 
where they do occur which need to be studied in time-dependent supernova models.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Neutrinos are essential to the thermal, chemical and dynamical 
evolution of the early universe and some of the compact objects 
such as the proto-neutron star inside a core-collapse supernova 
(SN). Whenever there is a difference between the energy spec-
tra and/or fluxes of the electron-flavor neutrino/antineutrino and 
other neutrino species, the flavor conversion or oscillations among 
different neutrino flavors can also have important impacts on nu-
cleosynthesis and other physics inside these hot and dense astro-
physical environments.

In the absence of collision the flavor evolution of the neutrino 
obeys the Liouville equation [1–3]

∂tρ + v̂ · ∇ρ = −i[Hvac + Hmat + Hνν, ρ], (1)

where v̂ is the velocity of the neutrino, ρ(t, x, p) is the (Wigner-
transformed) flavor density matrices of the neutrino which de-
pends on time t , position x and neutrino momentum p, Hvac is 
the standard vacuum Hamiltonian, and Hmat and Hνν are the mat-
ter and neutrino potentials, respectively. The neutrino potential in 
Eq. (1) takes the following form [4–6]:

Hνν = √
2GF

∫
d3 p′

(2π)3
(1 − v̂ · v̂′

)[ρ(t,x,p′) − ρ̄(t,x,p′)], (2)
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where GF is the Fermi coupling constant, and ρ̄ is the density 
matrix of the antineutrino. Because the neutrino potential couples 
neutrinos of different momenta, a dense neutrino medium can os-
cillate in a collective manner (see, e.g., [7–26]; see also [27] for a 
review).

Eq. (1) poses a challenging 7-dimensional problem (not taking 
into account the dimensions in neutrino flavors), and it has never 
been solved in its full form. In previous studies various simplifi-
cations have been made so that a numerical or analytic solution 
to this equation can be found. For neutrino oscillations in SNe a 
commonly used model is the (neutrino) Bulb model [13]. In this 
model a spatial spherical symmetry around the center of the SN is 
imposed so that it has only one spatial dimension. An additional 
directional axial symmetry around the radial direction is imposed 
to make the model self-consistent which reduces the number of 
momentum dimensions to two. One also imposes the time trans-
lation symmetry because the timescale of neutrino oscillations is 
much shorter than those in neutrino emission or dynamic evo-
lution in SNe. However, it has been shown in a series of recent 
studies that both the spatial and directional symmetries can be 
broken spontaneously by collective neutrino oscillations if they are 
not imposed [28–36] (see also [37] for a short review). In both 
cases small deviations from the initial symmetric conditions are 
amplified by the symmetry-breaking oscillation modes which can 
occur closer to the neutrino sphere than the symmetry-preserving 
modes do.
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Fig. 1. The geometric picture of the time-dependent (neutrino) Bulb model for su-
pernova. Two neutrinos emitted from the neutrino sphere of radius R with emission 
angles ϑR and ϑ ′

R and at time t − l/c and t − l′/c meet each other at radius r and 
time t , where l and l′ are the distances by which the two neutrinos have traveled 
from the neutrino sphere to their meeting point, respectively.

It is natural to wonder if collective neutrino oscillations can also 
break the time-translation symmetry spontaneously in SNe [28]. If 
they do, then a time-independent SN model may not accurately 
describe the neutrino oscillation phenomenon in SNe even though 
the typical timescale of the variation in the neutrino emission is 
much longer than that of neutrino oscillations. In this letter we 
analyze the neutrino flavor stability in a time-dependent SN model 
which should provide some interesting insights to this question.

2. Time-dependent neutrino Bulb model

We will focus on the potential differences between the re-
sults obtained from the time-dependent and stationary SN mod-
els. Therefore, we will employ the time-dependent Bulb model 
which has the same spatial spherical symmetry and the direc-
tional axial symmetry as in the conventional Bulb model. Unlike 
the conventional stationary Bulb model, however, we will not as-
sume that the emission and flavor evolution of the neutrinos are 
time-independent (see Fig. 1). For simplicity, we will consider the 
mixing between two active flavors, the e and x flavors, with the 
latter being the linear superposition of the μ and τ flavors. We 
also assume a small vacuum mixing angle θv � 1.

It is convenient to use the vacuum oscillation frequency

ω = ±|
m2|
2E

(3)

to label the neutrino and antineutrino with energy E , where 
m2

is the neutrino mass-squared difference, and the plus and minus 
signs apply to the neutrino and the antineutrino, respectively. We 
define reduced neutrino density matrix

�(t; r;ω, u) ∝
{

ρ if ω > 0,

ρ̄ if ω < 0
(4)

with normalization

tr� = 1, (5)

where u = sin2 ϑR with ϑR being the emission angle of the neu-
trino on the neutrino sphere (see Fig. 1), and r is the radial dis-
tance from the center of the SN.

The equation of motion (EoM) for the (reduced) density matrix 
� can be written as

i(∂t + vu∂r)� = [Hvac + Hmat + Hνν, �], (6)

where

vu(r) =
√

1 −
(

R

r

)2

u (7)

is the radial velocity of the neutrino. In the weak interaction basis 
the standard vacuum Hamiltonian and the matter potential are

Hvac ≈ −ηω

2
σ3 = −ηω

2

[
1 0
0 −1

]
(8)

and

Hmat = λ

[
1 0
0 0

]
=

[√
2GFne 0

0 0

]
, (9)

respectively, where η = +1 and −1 for the normal (neutrino mass) 
hierarchy (NH, i.e. with 
m2 > 0) and the inverted hierarchy (IH, 

m2 < 0), respectively, and ne is the net electron number density.

In this letter we assume that the number flux Fνα/ν̄α (E, ϑR)

of the neutrino/antineutrino in flavor α (α = e, x) is time inde-
pendent [38]. We define the distribution function of the neutrino 
emission to be

g(ω, u) ∝
∣∣∣∣ dE

dω

∣∣∣∣ ×
{

(Fνe + Fνx) if ω > 0,

−(F ν̄e + F ν̄x) if ω < 0
(10)

with normalization conditions
∞∫

0

dω

1∫
0

du

2
g(ω, u) = 1, (11a)

0∫
−∞

dω

1∫
0

du

2
g(ω, u) = − Ntot

ν̄

Ntot
ν

, (11b)

where

Ntot
ν =

∞∫
0

dE

1∫
0

du

2
(Fνe + Fνx), (12a)

Ntot
ν̄ =

∞∫
0

dE

1∫
0

du

2
(F ν̄e + F ν̄x) (12b)

are the total number luminosities of the neutrino and antineu-
trino (i.e. the number of neutrinos or antineutrinos emitted by the 
whole neutrino sphere per unit time), respectively. The opposite 
signs of g(ω, u) for the neutrino and antineutrino in Eq. (10) take 
into account their different contributions to the neutrino potential 
in Eq. (1). In the Bulb model the neutrino potential can be written 
as

Hνν(t; r; u) =
√

2GFNtot
ν

4πr2

∞∫
−∞

dω′
1∫

0

du′

vu′
(1 − vu vu′)

× g(ω′, u′)�(t; r;ω′, u′). (13)

Because collective neutrino oscillations usually occur in the regime 
R/r � 1 in the Bulb model, we will take the large-radius approxi-
mation [39]

vu(r) ≈ 1 −
(

R

r

)2 u

2
. (14)

In this approximation,

Hνν(t; r; u) ≈ μ

∫ (
u + u′

2

)
g′�′ d�′, (15)

where all the primed quantities are functions of u′ and ω′ , e.g., 
�′ = �(t; ω′, u′; r),

μ(r) =
√

2GFNtot
ν

4π R2

(
R

r

)4

(16)

is the strength of the neutrino potential at radius r, and



Download English Version:

https://daneshyari.com/en/article/1852571

Download Persian Version:

https://daneshyari.com/article/1852571

Daneshyari.com

https://daneshyari.com/en/article/1852571
https://daneshyari.com/article/1852571
https://daneshyari.com

