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The Isoscalar Giant Monopole Resonance (ISGMR) and the Isoscalar Giant Dipole Resonance (ISGDR) 
compression modes have been studied in the doubly-magic unstable nucleus 56Ni. They were measured 
by inelastic α-particle scattering in inverse kinematics at 50 MeV/u with the MAYA active target at 
the GANIL facility. The centroid of the ISGMR has been obtained at Ex = 19.1 ± 0.5 MeV. Evidence for 
the low-lying part of the ISGDR has been found at Ex = 17.4 ± 0.7 MeV. The strength distribution for 
the dipole mode shows similarity with the prediction from the Hartree–Fock (HF) based random-phase 
approximation (RPA) [1]. These measurements confirm inelastic α-particle scattering as a suitable probe 
for exciting the ISGMR and the ISGDR modes in radioactive isotopes in inverse kinematics.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Recent developments in nuclear physics involve the studies of 
short-lived exotic nuclei. New phenomena, such as, neutron halos, 
neutron skins, and modification of the magic numbers, occur for 
large neutron-to-proton (N/Z) ratios far from stability. The study of 
collective modes, the so-called giant resonances, in stable nuclei 
has been one of the important physics motivations throughout the 
history of nuclear physics. However, very little information about 
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the collective properties of exotic nuclei is available. Among these 
collective modes, the ISGMR and the ISGDR are of prime inter-
est as their excitation energies are directly related to the incom-
pressibility of a nucleus, K A [2,3]. The incompressibility of nuclear 
matter (K∞) is defined as the curvature of the energy per par-
ticle at the saturation density [4], and can be deduced from K A

[4–6]. It is an important key input to the equation of state (EoS) of 
nuclear matter which, in turn, is useful in understanding some as-
trophysical quantities, such as, radii and masses of neutron stars, 
and also in understanding the mechanism of supernovae explo-
sions.
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The value of K∞ obtained from the ISGMR and the ISGDR data 
in stable nuclei is 240 ± 10 MeV [4,6–8]. Theoretical calculations 
with effective interactions using this value of K∞ can reproduce 
well the centroid energies of the ISGMR for 90Zr, 144Sm, and 208Pb. 
On the other hand, they overestimate the centroid energies for the 
ISGMR strength distributions in Sn [9,10] and Cd [11] isotopes, al-
though they can reproduce well the ground-state properties for 
these isotopes. Nevertheless, the investigation of the ISGMR along 
the isotopic chains of Cd [11] and Sn [12] helped determine the 
symmetry energy of the EoS. In spite of significant theoretical ef-
forts to reproduce simultaneously the ISGMR centroid energies in 
90Zr, 208Pb, and in Sn/Cd isotopes, the problem remains as to why 
the isotopes of Sn and Cd are soft [9–11]. It should be mentioned 
that a recent attempt to fit the centroid energies of soft 120Sn and 
stiff 208Pb simultaneously [13,14] yielded a smaller value of K∞
with a large uncertainty, i.e., 230 ± 40 MeV. Therefore, it is useful 
to study compression modes for another series of isotopes to de-
termine both K∞ and the symmetry energy parameter of the EoS. 
Ni isotopes provide such an isotopic series widely ranging over N/Z
ratios. Therefore, efforts have been put to study in detail the com-
pression modes for several stable and unstable isotopes of Ni from 
the neutron-deficient to the neutron-rich regions of the nuclear 
chart.

Measurements of giant resonances in unstable nuclei are par-
ticularly challenging. Up to now such measurements have been 
mainly performed to study the isovector giant dipole resonance 
in neutron-rich radioactive oxygen [15], neon [16], and tin [17]
isotopes, and in 68Ni [18]. These studies have been performed 
through Coulomb excitation by scattering from a Pb target at rela-
tivistic energies. On the other hand, the best probe to study the 
isoscalar modes in a nucleus is either inelastic α-particle scat-
tering or inelastic deuteron scattering as both the α particle and 
deuteron have zero isospin. The isoscalar responses have been so 
far measured for the unstable doubly-magic 56Ni nucleus by inelas-
tic deuteron scattering [19] and for the unstable neutron-rich 68Ni 
nucleus by inelastic α-particle and deuteron scattering [20,21]. In 
our experiment, we focused on the study of isoscalar responses 
in 56Ni via inelastic α-particle scattering. The choice was made 
because of the fact that, the 56Ni(α, α′)56Ni* reaction has higher 
cross section than the 56Ni(d, d′)56Ni* reaction and the unwanted 
background due to deuteron breakup can be avoided. Another in-
teresting reason to study the collective modes in 56Ni is because of 
the important role 56Ni plays in the astrophysical scenarios. 56Ni, a 
doubly-magic closed-shell nucleus, is one of the waiting point nu-
clei in the stellar nucleosynthesis and it was found in the ejecta of 
supernova 1987A [22].

The ISGMR cross section is peaked at 0◦ in the center-of-mass 
(CM) frame, which corresponds to the detection of very low-energy 
recoil α particles in the laboratory frame. To measure the exci-
tation energy ranging from 0 MeV (elastic scattering) to 35 MeV 
in inverse kinematics, it is necessary to detect the recoil α parti-
cles having energies up to 4.5 MeV, which corresponds to 8◦ CM 
angle. Detection of such low-energy recoil α particles (including 
sub-MeV) with a particle telescope would necessitate a very thin 
target (∼30 μg/cm2) to allow the α particles to emerge from the 
target and to minimize the straggling. This would consequently re-
quire the radioactive ion beam to have an intensity of the order 
of 5 × 106 particles/s or above in order to have reasonable yields 
(≥1000 counts for the ISGMR at 5.5◦ CM angle for a beam time 
run of 5 days). Although this is feasible with a storage-ring facil-
ity, such as the Experimental Storage Ring (ESR) at GSI [23–25], 
another alternative is to use an active-target detector. An example 
of such detector is IKAR [26], developed at GSI, which was used 
to study the elastic scattering of exotic beams at relativistic ener-
gies. Another example is MSTPC [27], built in Japan, for studying 

fusion reactions and reactions of nuclear-astrophysics interest at 
low energies. In our experiment, we used the MAYA active-target 
detector [28]. It is a gas target where the target gas acts also as 
a detector. In an active target such as MAYA, the target thickness 
can be increased without severe loss of energy resolution by in-
creasing the gas pressure. In this Letter, we present the results 
of the first measurement of the isoscalar giant resonances in the 
doubly-magic 56Ni investigated with inelastic α-particle scattering 
in inverse kinematics using the MAYA active-target detector.

A secondary beam of 56Ni at 50 MeV/u was produced at the 
GANIL facility by the In-Flight fragmentation technique. The pri-
mary stable beam of 58Ni at 75 MeV/u impinged on a 525.6 μm 
thick 9Be target located at the entrance of the LISE [29] spectrom-
eter. Two dipole magnets and a 500 μm achromatic degrader were 
used to purify the secondary beam. The average beam intensity of 
56Ni was of the order of 2 × 104 particles/s with a purity of about 
96%. A plastic scintillator detector, followed by the MAYA detector, 
was put at the end of the LISE spectrometer. The plastic scintilla-
tor was used to count the number of incoming beam particles. The 
active-target detector MAYA, developed at GANIL, is a time-charge 
projection chamber with an active volume of 28 × 25 × 20 cm3. In 
the presence of an electric field applied across the target volume, 
electrons produced through ionization of the gas by the incident 
beam or reaction products, drift towards a set of 32 amplification 
wires that are parallel to the beam direction. For a two-body reac-
tion, the angle of the reaction plane can be determined by the 
drift time of the electrons towards the amplification wires. The 
avalanches on the amplification wires induce signals on a matrix of 
32 × 32 hexagonal pads connected to GASSIPLEX [28] chips. MAYA 
was filled with 95% helium gas and 5% CF4, which acts here as a 
quencher since pure helium cannot be used due to sparking. The 
pressure of the gas-mixture was maintained at 500 mbar. With the 
effective length of 20 cm, a luminosity of around 5 ×1024 cm−2 s−1

was achieved. An electrostatic mask [30] was placed just below the 
beam trajectory in MAYA. This electrostatic mask helps in reducing 
the charges due to the highly-ionizing beam particles in compar-
ison to those induced by the very low-energy recoil α particles, 
thus effectively increasing the dynamic range for charge-detection.

For each event, two observables are measured to reconstruct 
the reaction kinematics: the range and the scattering angle of the 
recoil particle. Since MAYA is a time-charge projection chamber, 
the projected recoil angle is reconstructed using a “global fitting 
method” as described in Refs. [20,21,31]. In this method, a straight-
line trajectory is obtained by minimizing the orthogonal distances 
of the centers of the pads weighted by the charges on the pads 
to the fitted trajectory line. The intersection of the fitted trajec-
tories of the beam path and the recoil-particle path determines 
the vertex of interaction. From the charge projection of the recoil 
α particle, the Bragg peak is determined and the projected range 
of the recoil particle is measured from the vertex of interaction. 
Recoil particles from the quenching gas were rejected on an event-
by-event basis using the total charge integral versus the range of 
the ionizing particles. The third dimension is obtained from the 
drift times of the electrons towards the amplification wires. The 
scattering angle is obtained from the projected angle on the pads 
and the measured drift times. After obtaining the range in three 
dimensions, the energy of the recoil α particle is deduced using 
range-to-energy tables in SRIM [32]. The range, energy, and scatter-
ing angle of the recoil particle are deduced on an event-by-event 
basis. A reliable trajectory reconstruction has been achieved for re-
coil α particles having energies higher than 600 keV.

The reconstructed three-dimensional scattering of the recoil α
particles provides the kinematics for the 56Ni(α, α′)56Ni* reaction 
as presented in Fig. 1, where the energy of the recoil α particle is 
shown as function of the scattering angle for all events. The solid 
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