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Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark 
matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the 
lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and 
gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of 
the strong magnetic field in pulsars and/or magnetars.
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Recently, the existence of the inhomogeneous chiral phase in 
the QCD phase diagram has been discussed by the analysis of the 
effective models such as Nambu–Jona–Lasinio (NJL) model [1–3] or 
the Schwinger–Dyson approach [4]. In this phase, the quark con-
densates spatially modulate and it is very similar to the FFLO state 
in superconductor [5,6] or spin/charge density wave [7,8]. Here, we 
consider “dual chiral density wave (DCDW)” [1] among many kinds 
of form of the condensates: the quark condensates then take the 
form,

�(r) ≡ 〈ψ̄ψ〉 + i〈ψ̄ iγ 5τ3ψ〉 = �eiqz, (1)

within the two-flavor QCD. This configuration is also obtained by 
embedding one of the Hartree–Fock solutions in the NJL2 model, 
so-called chiral spiral [9,10]. Since the DCDW phase has been ex-
pected to appear in the moderate density region [1], it may be 
plausible that this phase is realized in neutron stars.

The effect of the magnetic field has been first discussed by 
Frolov et al. for the DCDW phase [11]. They have found that the 
spatial direction of the wavevector q is favored to be parallel to the 
magnetic field, and the domain of the DCDW phase is much ex-
tended in the QCD phase diagram. In Ref. [12] these features arise
from some topological effect through spectral asymmetry of the 
quark energy; quarks exhibit an interesting feature in the presence 
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of the magnetic field and the energy spectrum becomes asymmet-
ric about zero. There also appear new terms in the generalized 
Ginzburg–Landau expansion due to spectral asymmetry, which sig-
nals the novel Lifshitz point in the QCD phase diagram. Thus, 
they emphasized the peculiar role of the phase degree of freedom 
of �(r).

Here we further inquire this issue. We study magnetic prop-
erties of the DCDW phase to reveal another aspect, spontaneous 
magnetization in the DCDW phase, which suggests a microscopic 
origin of the strong magnetic field in compact stars.

The origin of the strong magnetic field in compact stars has 
been one of the long-standing problems. In particular, magnetars 
have the huge magnetic field ∼ 1015 G on the surface [13,14]. As a 
candidate of the origin, amplification of the magnetic field by the 
dynamo mechanism, magnetorotational instability or the hypothe-
sis of the fossil magnetic field has been proposed so far from the 
macroscopic point of view. Although numerical simulations have 
been actively performed, no definite conclusions have been ob-
tained. From the microscopic point of view, it has been proposed 
that the spontaneous magnetization emerges by spin alignment 
of quarks on the analogy of the electron gas [15]. However, this 
phase should be developed in the low density region. As another 
mechanism, it has been proposed that axial anomaly acting on the 
parallel layer of the pion domain wall produces magnetization in 
nuclear matter [16,17].

We use the two-flavor NJL model in the mean field approxima-
tion. It is sufficient to consider the each flavor case because La-
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grangian is diagonalized about the flavors. Then, the Dirac Hamil-
tonian takes the form,

H = −iα · D − 2Gγ 0
[

1 + γ5

2
�(r) + 1 − γ5

2
�∗(r)

]
(2)

with the covariant derivative, D = ∇ + ie f A. Taking the external 
magnetic field B along the z axis, the energy spectrum constitutes 
the Landau levels [11],

E f
pznζε = ε

√(
ζ

√
p2

z + m2 + q/2

)2

+ 2|e f B|n (n �= 0), (3)

E pzε = ε

√
p2

z + m2 + q/2 (n = 0), (4)

with ζ = ±1, which denotes the spin polarization. For m ≤ q/2, 
the sign of ε does not always correspond to the particle or anti-
particle state because the lower branch of the lowest Landau level 
(LLL) (n = 0) is not always negative. In the higher Landau levels 
(hLLs) (n �= 0), there are four energy branches. On the other hand, 
LLL has only two energy branches and becomes asymmetric about 
zero. As a result, the thermodynamic potential takes the form in 
the two-flavor case,

�(μ, T , B;m,q) = m2

4G
+ Nc

∑
f =u,d

� f , (5)

where

� f = −|e f B|T
4π

∫
dpz

2π

∑
k

{ ∑
n,ζ,ε

ln
[
ω2

k + (E f
pznζε − μ)2

]

+
∑
ε

ln
[
ω2

k + (E pzε − μ)2
]}

, (6)

with the Matsubara frequency, ωk = (2k + 1)π T .
To investigate the response of quark matter to the weak mag-

netic field B , the thermodynamic potential is expanded about B ,

�(μ, T , B ;m,q) =
�(0)(μ, T ;m,q) + eB �(1)(μ, T ;m,q) + · · · , (7)

where e denotes the elementary charge. It should be legitimate as 
far as eB/μ2, eB/T 2 < 1. For μ or T being close to zero, it should 
be considered that the limit of B → 0 is taken before μ or T → 0.

Since the vacuum part in �(0) has divergence, it must be reg-
ularized by, e.g., the proper time regularization (PTR) [1]. LLL con-
tributes only to �(1) because the energy spectrum does not de-
pend on B and the B dependence only emerges through the Lan-
dau degeneracy factor. On the other hand, hLLs contribute to the 
all order terms of B .

The magnetization can be deduced from the thermodynamic 
potential as,

M = −∂�min(μ, T , B)

∂ B
, (8)

where �min represents the minimized thermodynamic potential 
about the order parameters and only depends on μ, T and B . Tak-
ing the limit, B → 0, we find the spontaneous magnetization in the 
form,

M0 = −e�(1)(μ, T ;m = m(0),q = q(0)), (9)

where m(0) and q(0) represent the minimal values for �(0) . In the 
following, we will figure out the peculiar role of LLL and show that 
it leads to spontaneous magnetization.

For the evaluation of �(1) , we must carefully treat the effect 
of chiral anomaly. According to Refs. [18,19], spectral asymmetry 
generally gives rise to anomalous particle number,

Nanom = − lim
s→+0

1

2

∑
k

sign(λk)|λk|−s, (10)

where λk is the eigenvalue of the arbitrary Dirac Hamiltonian. 
Spectral asymmetry is ill-defined as it is and needs a proper reg-
ularization without violating the gauge invariance. In the DCDW 
phase, LLL exhibits spectral asymmetry to induce anomalous par-
ticle number proportional to B [12]. Then, the LLL contribution in 
�(1) can be decomposed into three terms,

�(1),LLL = �
(1),LLL
vac + �

(1),LLL
μ + �

(1),LLL
T , (11)

where

�
(1),LLL
vac = − Nc

4π

∫
dpz

2π

∑
ε

|ωε | , (12)

�
(1),LLL
μ = − Nc

2π

∫
dpz

2π

∑
ε

(μ − ωε) θ(ωε)θ(μ − ωε)

+ μNc

4π
ηH , (13)

�
(1),LLL
T = − Nc T

2π

∫
dpz

2π

∑
ε

ln
(

1 + e−β|ωε−μ|) , (14)

with ωε = ε
√

p2
z + m2 + q/2. The density dependent term �(1),LLL

μ

includes the anomalous contribution, μNc
4π ηH , caused by spectral 

asymmetry. The η-invariant, ηH , renders

ηH ≡ lim
s→+0

∫
dpz

2π

∑
ε

|ωε |−s sign(ωε)

=
{− q

π (m > q/2),

− q
π + 2

π

√
q2/4 − m2 (m < q/2).

(15)

When m > q/2, this quantity agrees with the contribution of the 
chiral anomaly represented by the Wess–Zumino–Witten (WZW) 
term [16]. The WZW term does not depend on m but it vanishes in 
the limit, m → 0. The contribution of hLLs to �(1) should be care-
fully evaluated by expanding the thermodynamic potential with 
respect to B after the summation over n. Then, the hLLs contri-
bution in �(1) can be similarly decomposed into three terms,

�(1),hLL = �
(1),hLL
vac + �

(1),hLL
μ + �

(1),hLL
T , (16)

which does not include the anomalous contribution since hLLs 
have no spectral asymmetry. We find that the three terms are the 
even function of q, and �(1),hLL

vac = −�
(1),LLL
vac . Thus �(1) = �(1),LLL +

�(1),hLL does not diverge without any regularization and renders

�(1) = μNc

4π
ηH

− Nc

4π

∫
dpz

2π

∑
ε

∑
τ=±1

τ (μ − τωε) θ(τωε)θ(μ − τωε)

− Nc T

4π

∫
dpz

2π

∑
ε

∑
τ=±1

τ ln
(

1 + e−β|ωε−τμ|) . (17)

The first term can be interpreted as the contribution of anomaly 
and the second and third terms as the contribution of valence 
quarks. Note that the even function of q in Eq. (11) is completely 
canceled by the corresponding one in Eq. (16) to make �(1) the 
odd function of q. It vanishes in the limit: m → 0, which behavior 
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