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We compute the total cross-section for Higgs boson production in bottom-quark fusion using the so-
called FONLL method for the matching of a scheme in which the b-quark is treated as a massless parton 
to that in which it is treated as a massive final-state particle. We discuss the general framework for the 
application of the FONLL method to this process, and then we present explicit expressions for the case 
in which the next-to-next-to-leading-log five-flavor scheme result is combined with the leading-order 
O(α2

s ) four-flavor scheme computation. We compare our results in this case to the four- and five-flavor 
scheme computations, and to the so-called Santander matching.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

In perturbative QCD, processes involving bottom quarks can be 
computed within different factorization schemes. One possibility is 
to use a five-flavor, or massless, scheme, in which the b-quark is 
treated as a massless parton. In this scheme, collinear logarithms 
of μ2

F /m2
b (with μF the factorization scale) are resummed through 

QCD evolution equations, but corrections suppressed by powers 
of m2

b/μ2
F are neglected. Alternatively, one may use a four-flavor, 

massive, or decoupling scheme, in which the b-quark is treated 
as a massive particle, which decouples from evolution equations 
and the running of αs , but full dependence on mb is retained. 
Generally, of course, results in the two schemes may differ by a 
large amount: indeed, the leading-order predictions for Higgs bo-
son in bottom-quark fusion [1–4] may differ by up to one order of 
magnitude [5], though the disagreement is reduced if the factor-
ization and renormalization scales are chosen to be smaller than 
mH (which may well [6–10] be more appropriate) and higher per-
turbative orders are included.

The five-flavor scheme is more accurate for scales μ2 � m2
b , 

while the four-flavor scheme is more accurate close to threshold, 
though of course if the four-flavor computation is performed to 
high enough order in perturbation theory it will reproduce the 
five-flavor scheme result (the converse is not true, because mass 
corrections are not included in the five-flavor scheme at any per-
turbative order). It is therefore advantageous to combine the two 
computations into one which is accurate at all scales. A phe-
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nomenological way of doing so, the so-called Santander matching, 
has been proposed in Ref. [11]: it consists of simply interpolat-
ing between the four- and five-flavor scheme results by means
of a weighted average, such that in the two limits μ/mb � 1 or 
μ/mb ∼ 1 the massless or massive results are respectively repro-
duced.

However, a more systematic approach which preserves the per-
turbative accuracy of both computations may be desirable. One 
such approach, the FONLL method, was proposed in Ref. [12] in 
the context of hadro-production of heavy quarks, and extended to 
deep-inelastic scattering in Ref. [13]. The basic idea of this method 
is to expand out the five-flavor-scheme computation in powers of 
the strong coupling αs , and replace a finite number of terms with 
their massive-scheme counterparts. The result then retains the ac-
curacy of both ingredients: at the massive level, the fixed-order 
accuracy corresponding to the number of massive orders which 
have been included (FO, or fixed order), and at the massless level, 
the logarithmic accuracy of the starting five-flavor scheme compu-
tation (NLL, or generally subleading logarithmic1).

It is the purpose of this paper to present the application of the 
FONLL scheme to Higgs production in bottom-quark fusion, focus-
ing for definiteness on the total cross-section. In the rest of this 
paper we will follow the notation and conventions of Ref. [13].

1 We will consistently use the notation NkLL to refer to the resummation of 
collinear logs of the heavy quark mass, i.e. by LL we mean a computation in which (
αs ln

m2
b

μ2

)
is treated as order one (α0

s ).
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The total cross-section σ in the five-flavor scheme has the form

σ (5) =
∫∫

dx1dx2

∑
i j

f (5)
i (x1,μ

2) f (5)
j (x2,μ

2)

× σ̂
(5)
i j

(
x1, x2,α

(5)
s (μ2)

)
, (1)

where the sum runs over the 10 quarks and antiquarks and the 
gluon, and the b quark and antiquark are treated as the other par-
tons, which in particular contribute to the running of α(5)

s . For 
simplicity we omit the dependence of the hard cross-section on 
the renormalization and factorization scales, which henceforth we 
will assume to be chosen equal to μR = μF = μ, unless otherwise 
stated.

In the four-flavor scheme it has the form

σ (4) =
∫∫

dx1dx2

∑
i j

f (4)
i (x1,μ

2) f (4)
j (x2,μ

2)

× σ̂
(4)
i j

(
x1, x2,

μ2

m2
b

,α
(4)
s (μ2)

)
, (2)

where now the sum only runs over the four lightest quarks and an-
tiquarks and the gluon, the b-quark decouples from the running of 
α

(4)
s and the DGLAP evolution equations satisfied by f (4)

i (x1, μ2), 
but full mb dependence of the partonic cross-section σ̂ (4)

i j is re-
tained.

In order to carry out the FONLL procedure, we need to express 
the four-flavor scheme cross-section, Eq. (2), in terms of α(5)

s and 
f (5)

i , so that their perturbative expansions can be compared di-
rectly. The coupling constant and the PDFs are related in the two 
schemes by equations of the form

α
(5)
s (μ2) = α

(4)
s (μ2) +

∞∑
i=2

ci(L) ×
(
α

(4)
s (m2

b)
)i

, (3)

f (5)
i (x,μ2) =

1∫
x

dy

y

∑
j

Ki j

(
y, L,α

(4)
s (μ2)

)
f (4)

j

(
x

y
,μ2

)
, (4)

where

L ≡ lnμ2/m2
b (5)

and the sum runs over the eight lightest flavors, antiflavors, and 
the gluon, while the index i takes value over all ten quarks and 
antiquarks and the gluon. The coefficients ci(L) are polynomials 
in L, and the functions Kij can be expressed as an expansion in 
powers of αs , with coefficients that are polynomials in L.

The first nine equations (4) relate the eight lightest quarks and 
the gluon in the two schemes and can be inverted to express the 
four-flavor-scheme PDFs in terms of the five-flavor-scheme ones. 
The last two equations, assuming that the bottom quark is gen-
erated by radiation from the gluon (i.e. no “intrinsic” [14] bottom 
component) express the bottom and anti-bottom PDFs in terms of 
the other ones. In particular, this assumption implies that the b
quark and antiquark PDFs are equal to each other, f (5)

b = f (5)

b̄
. In-

verting Eqs. (3)–(4) and substituting in Eq. (2) one can obtain an 
expression of σ (4) in terms of α(5)

s and f (5)
i :

σ (4) =
∫∫

dx1dx2

∑
i j=q,g

f (5)
i (x1,μ

2) f (5)
j (x2,μ

2)

× B(4)
i j

(
x1, x2,

μ2

m2
b

,α
(5)
s (μ2)

)
, (6)

where the coefficient functions Bij are such that substituting the 
matching relations Eqs. (3)–(4) in Eq. (6) the original expression 
Eq. (2) is recovered. Note that in the course of the procedure of 
expressing σ (4) in terms of α(5)

s and f (5)
i , subleading terms are in-

troduced, because (3)–(4) are only inverted to finite perturbative 
accuracy. It follows that the expressions Eq. (2) and Eq. (6) of σ (4)

actually differ by subleading terms. Henceforth, for σ (4) we will 
use the expression Eq. (6), and avoid any further reference to α(4)

s

and f (4)
i ; therefore, from now on αs and f i will denote the five-

flavor scheme expressions.
In order to match the two expressions for σ in the five-flavor 

scheme, Eq. (1), and in the four-flavor scheme, Eq. (6), we now 
work out their perturbative expansion. Using DGLAP evolution, the 
b-PDF, f (5)

b (μ2), can be determined in terms of the gluon and 
the light-quark parton distributions f (5)

i at the scale μ2 convo-

luted with coefficient functions expressed as a power series in α(5)
s , 

with coefficients that are polynomials in L. The five-flavor-scheme 
expression Eq. (1) may thus be written entirely in terms of light-
quark and gluon PDFs:

σ (5) =
∫∫

dx1dx2

∑
i j=q,g

f (5)
i (x1,μ

2) f (5)
j (x2,μ

2)

× A(5)
i j

(
x1, x2, L,α

(5)
s (μ2)

)
, (7)

where the A(5)
i j coefficient functions are given by a perturbative 

expansion of the form

A(5)
i j

(
x1, x2, L,α

(5)
s (μ2)

)

=
N∑

p=0

(
α

(5)
s (μ2)

)p ∞∑
k=0

A(p),(k)

i j (x1, x2)
(
α

(5)
s (μ2)L

)k
, (8)

with at leading order N = 0, and at NmLO order N = m.
On the other hand, the four-flavor-scheme expression Eq. (6), as 

mentioned, is also written in terms of the light-quark PDFs, with 
coefficient functions Bij which can also be expanded in power of 
α

(5)
s ,

B(4)
i j

(
x1, x2,

μ2

m2
b

,α
(5)
s (μ2)

)

=
N∑

p=0

(
α

(5)
s (μ2)

)p
B(p)

i j

(
x1, x2,

μ2

m2
b

)
, (9)

where N is the order of the expansion needed to reach the de-
sired accuracy. It follows that the sum of all contributions to the 
four-flavor-scheme expression Eq. (9) which do not vanish when 
μ2 � m2

b must also be present in the five-flavor-scheme result.

These contributions B(0),(p)

i j provide the massless limit of B(p)

i j , 
in the sense that

lim
mb→0

[
B(p)

i j

(
x1, x2,

μ2

m2
b

)
− B(0),(p)

i j

(
x1, x2,

μ2

m2
b

)]
= 0. (10)

In other words, B(0),(p)

i j is obtained from B(p)

i j by retaining all log-
arithms and constant terms and dropping all terms suppressed by 
powers of mb/μ. Given that these terms are also present in the 
five-flavor-scheme calculation, we can also write

B(0),(p)

i j

(
x1, x2,

μ2

m2
b

)
=

p∑
k=0

A(p−k),(k)

i j (x1, x2) Lk (11)
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