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Moments of the φ meson spectral function in vacuum and in nuclear matter are analyzed, combining 
a model based on chiral SU(3) effective field theory (with kaonic degrees of freedom) and finite-energy 
QCD sum rules. For the vacuum we show that the spectral density is strongly constrained by a recent 
accurate measurement of the e+e− → K + K − cross section. In nuclear matter the φ spectrum is modified 
by interactions of the decay kaons with the surrounding nuclear medium, leading to a significant 
broadening and an asymmetric deformation of the φ meson peak. We demonstrate that both in vacuum 
and nuclear matter, the first two moments of the spectral function are compatible with finite-energy 
QCD sum rules. A brief discussion of the next-higher spectral moment involving strange four-quark 
condensates is also presented.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The study of vector mesons (ρ , ω and φ) in nuclear matter 
has attracted much interest during the last two decades [1,2]. In 
recent years, the φ meson has particularly come into focus, with 
dedicated experiments investigating its in-medium properties con-
ducted for instance at KEK [3] and at COSY-ANKE [4]. More detailed 
measurements are being planned for the future in the E16 ex-
periment at J-PARC [5,6]. Interpreting the experimental findings 
requires a thorough theoretical understanding of the modification 
of the φ meson spectral function at finite density.

One important issue that needs to be understood is whether 
and how the modifications of the φ meson spectral density in nu-
clear matter reflect changes of the non-perturbative QCD vacuum 
at finite densities. This question has been investigated previously 
in the context of QCD sum rules at finite density [7–10]. Using 
updated input we argue in the present work that the two lowest 
(zeroth and first) moments are especially suitable for a detailed 
study of the spectral function with respect to low-dimensional 
QCD condensates. These lowest moments involve only operators up 
to dimension 4 which are relatively well understood. Condensates 
of dimension 6 and higher (such as the four-quark condensates) do 
not yet enter at that stage. Furthermore, the ratio of the first over 
the zeroth moment provides a well defined quantity representing 
a squared mass averaged over the φ resonance plus low-energy 
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continuum. This ratio does not depend on details of the spectral 
function and can in principle be accessed by experimental mea-
surements [11].

This article presents a systematic analysis of the lowest two 
moments of the φ meson spectral function, using finite-energy 
QCD sum rules (FESR). To describe the spectral function in vacuum 
we employ a generalized and improved vector dominance model 
[12,13] and constrain its parameters by recent e+e− → K +K −
cross section data [14]. The changes of this spectrum in nuclear 
matter are expressed using updated kaon–nucleon forward scatter-
ing amplitudes, with interactions derived from chiral SU(3) effec-
tive field theory and coupled channels [15]. The resulting spectral 
functions are then tested for their consistency with FESR. Also in-
cluded is a short digression on higher moments and the strange 
four-quark condensate. A summary and conclusions follow in the 
final section.

2. Spectral moment analysis in vacuum

2.1. The vacuum spectral function

The starting point is the correlator of the strange quark current, 
jμ(x) = 1

3 s(x)γμs(x), which couples to the physical φ meson state:

�μν(q) = i

∫
d4x eiqx〈T[ jμ(x) jν(0)]〉ρ. (1)

〈 〉ρ stands for the expectation value with respect to the ground 
state of nuclear matter at temperature T = 0 and with density ρ . 
The vacuum case is realized in the limit ρ = 0. For a φ meson at 
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rest it suffices to study the (dimensionless) contracted correlator, 
�(q2) = 1

3q2 �
μ
μ(q). Using an improved vector dominance model 

[12], Im�(q2) can be written as

Im�(q2) = Im �φ(q2)

q2 g2
φ

∣∣∣∣∣
(1 − aφ)q2 − m̊2

φ

q2 − m̊2
φ − �φ(q2)

∣∣∣∣∣
2

. (2)

The self-energy �φ(q2) (of dimension mass2) is governed by the 
coupling of the φ to K K loops and their propagation [12], either 
in vacuum or in the nuclear medium. The bare mass m̊φ and the 
coupling constant gφ are determined to agree with experimental 
observations. The coupling strength is expected to be of the or-
der of the value determined by SU(3) symmetry, gφ � −3g/

√
2, 

with g = 6.5. Furthermore, the constant aφ represents the ratio 
between the φK K and φγ couplings and should be close to unity 
[8,12]. Here we assume aφ = 1 which gives a very good fit to the 
experimental e+e− → K +K − data as will be shown below. The 
φ self-energy includes the contributions from charged and neutral 
kaon loops:

�φ(q2) = �φ→K + K −(q2) + �φ→K 0
L K 0

S
(q2). (3)

For specific expressions of the corresponding loop integrals, see 
[12,13].

The actual values of m̊φ and gφ are determined by fitting Eq. (2)
to the recent precise measurement of the e+e− → K +K − cross 
section provided by the BaBar Collaboration [14]. As in this re-
action only the charged kaons are detected, only the correspond-
ing φ → K +K − term of Im�φ(q2) appearing in the numerator of 
Eq. (2) should be kept while intermediate charge exchange pro-
cesses, K +K − ↔ K 0 K 0, are included in the resummation of the 
K K loops. In order to describe the data at energies in the contin-
uum above the φ meson peak where the simple model of Eq. (2)
cannot be expected to work, we add a second order polynomial in 
c(q2) =

√
q2/q2

th − 1, for 
√

q2 >

√
q2

th = 1040 MeV:

Im�cont.(q2) = A c(q2) + B c2(q2), (4)

with coefficients A and B fitted to the data. This form of the 
K +K − continuum will be kept both in vacuum and nuclear matter. 
The result of this fit gives gφ = 0.74 × (−3g/

√
2) � −10.2, m̊φ =

797 MeV, A = −5.94 × 10−3 and B = 3.61 × 10−3. The respective 
curve is shown in Fig. 1 together with the experimental data. As 
demonstrated in this figure, the parameterizations (2), (4) give an 
accurate description of the data up to about 

√
q2 = ω � 1.6 GeV, 

above which the experimental points are seen to drop rapidly. This 
drop is parametrized by a simple linear curve fitted to the data 
points in this region.

Additional channels beyond e+e− → K +K − , such as K 0 K 0

and K K + nπ final states, are less well established by empirical 
data. We include them schematically in the thin solid line shown 
in Fig. 1.

2.2. Finite-energy sum rules

In the deep-Euclidean limit (Q 2 = −q2 → ∞) the correlator (1)
can be expressed with the help of the operator product expansion 
(OPE). The following expansion holds in the vacuum:

9�(q2 = −Q 2) = −c0 log
( Q 2

μ2

)
+ c2

Q 2
+ c4

Q 4
+ c6

Q 6
+ . . . . (5)

For the coefficients ci one finds1

1 The λa in c6 denote Gell-Mann SU(3) color matrices.

Fig. 1. The fitted spectral function −12π Im�(ω2) in vacuum, compared to the ex-
perimental data for σ(e+e− → K + K −)/σ (e+e− → μ+μ−), adapted from [14]. The 
dashed [solid] curve shows the result when only Eq. (2) [both Eqs. (2) and (4)] are 
used for the fit. The dotted horizontal line stands for the perturbative QCD limit 
while the thin gray line represents the full spectral function of Eq. (12), including 
K 0 K 0 and K K + nπ channels.

c0 = 1

4π2

(
1 + αs

π

)
, c2 = −3m2

s

2π2
, (6)

c4 = 1

12

〈αs

π
G2

〉
+ 2ms〈ss〉, (7)

c6 = −2παs

[
〈(s γμγ5 λa s)2〉 + 2

9
〈(s γμ λa s)

∑
q=u,d,s

(q γμ λa q)〉
]

+ m2
s

3

[1

3

〈αs

π
G2

〉
− 8ms〈ss〉

]
. (8)

Higher order terms in αs and ms have also been computed [10]. 
Here we keep only the most important contributions, sufficient for 
the purposes of the present work.

Using the once subtracted dispersion relation

�(q2) = �(0) + q2

π

∞∫

0

ds
Im�(s)

s(s − q2 − iε)
, (9)

and applying the Borel transformation, one derives the sum rule:

1

M2

∞∫

0

ds R(s) e−s/M2 = c0 + c2

M2
+ c4

M4
+ c6

2M6
+ . . . (10)

with the spectral function

R(s) = − 9

π
Im �(s). (11)

At large s this spectral function approaches its perturbative QCD 
limit, so the following ansatz is introduced:

R(s) = Rφ(s)
(s0 − s) + Rc(s)
(s − s0), (12)

with Rc(s) = c0, and s0 represents a scale that delineates the low-
energy and high-energy parts of the spectrum. Substituting this 
into Eq. (10) and expanding the left-hand side in inverse powers 
of M2, one derives the finite-energy sum rules:

s0∫

0

ds Rφ(s) = c0 s0 + c2, (13)

s0∫

0

ds s Rφ(s) = c0

2
s2

0 − c4, (14)



Download	English	Version:

https://daneshyari.com/en/article/1852620

Download	Persian	Version:

https://daneshyari.com/article/1852620

Daneshyari.com

https://daneshyari.com/en/article/1852620
https://daneshyari.com/article/1852620
https://daneshyari.com/

