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We propose a new mechanism which can introduce large CP asymmetries in the phase spaces of three-
body decays of heavy baryons. In this mechanism, a large CP asymmetry is induced by the interference 
of two intermediate resonances, which subsequently decay into two different combinations of final 
particles. We apply this mechanism to the decay channel �0

b → pπ0π−, and find that the differential 
CP asymmetry can reach as large as 50%, while the regional CP asymmetry can reach as large as 16% in 
the interference region of the phase space.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

CP violation is an important phenomenon in particle physics. 
Although it has been discovered in the mixing and decay pro-
cesses of K and B meson systems, including the first discovery 
of CP violation in K system [1], no CP violation was established 
in the baryon sector, except an evidence in the decay channel 
�0

b → pK − [2]. Within the Standard Model, CP violation has orig-
inated from the weak phase in the Cabibbo–Kobayashi–Maskawa 
(CKM) matrix [3], along with a strong phase which usually arises 
from strong interactions. One reason for the smallness of CP vio-
lation is that the strong phases are usually small, especially when 
the strong phases come from a scale that is much larger than the 
QCD scale. However, non-perturbative effects of the strong interac-
tion at low scales provide possibilities for large strong phases, and 
hence, large CP violation.

Three-body decays of heavy hadrons can be dominated by in-
termediate resonances in certain regions of the phase space. When 
two resonances decay into two different combinations of final par-
ticles, it is possible for them to dominate in the same region of 
the phase space. As a result, the interference effect together with 
a possible large strong phase can generate a large CP asymmetry.
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2. Differential CP asymmetry

It gets more interesting when one applies the aforementioned 
interference effect to the decay process of heavy baryons. For the 
decay process �0

b → pπ0π− , there is an overlap region in the 
phase space for resonances ρ−(770) and N+(1440), which lies 
right in the corner of the phase space. The decay amplitude for 
�0

b → pπ0π− can be expressed as

M = 〈pπ0|Ĥ1|N+〉〈π−N+|Ĥeff|�0
b〉

s0 − m2
N + imN�N

+ 〈π0π−|Ĥ2|ρ−〉〈pρ−|Ĥeff|�0
b〉

s − m2
ρ + imρ�ρ

, (1)

in the overlap region of the phase space, where Ĥeff is the effec-
tive Hamiltonian for the weak decays, Ĥ1 and Ĥ2 are the formal 
Hamiltonian for the strong decays in which the magnitudes of the 
coupling constants can be determined from experiments, s and s0
are the invariant mass squares of the systems π0π− and pπ0, re-
spectively, mρ , mN , �ρ , and �N are the masses and decay widths 
of ρ0(770) and N+(1440), respectively, and the summation over 
the polarizations of the intermediate particles is understood. The 
effective Hamiltonian Ĥeff takes the form [4]

http://dx.doi.org/10.1016/j.physletb.2015.10.076
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2015.10.076
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:zhangzh@usc.edu.cn
mailto:chaowang11@mail.bnu.edu.cn
mailto:xhguo@bnu.edu.cn
http://dx.doi.org/10.1016/j.physletb.2015.10.076
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2015.10.076
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.10.076&domain=pdf


Z.-H. Zhang et al. / Physics Letters B 751 (2015) 430–433 431

Ĥeff = G F√
2

[
V ub V ∗

ud(c1 O u
1 + c2 O u

2)

+ V cb V ∗
cd(c1 O c

1 + c2 O c
2) − Vtb V ∗

td

10∑
i=3

ci O i

]

+ h.c., (2)

where G F is the Fermi constant, V ud , V ub , V cd , V cb , Vtd , and Vtb
are the CKM matrix elements, ci (ci = 1, · · · , 10) is the Wilson 
constant, and O i is the four-Fermion operator, which takes the 
form

O q
1 = d̄αγμ(1 − γ5)qβ q̄βγ μ(1 − γ5)bα,

O q
2 = d̄γμ(1 − γ5)qq̄γ μ(1 − γ5)b,

O 3 = d̄γμ(1 − γ5)b
∑

q′
q̄′γ μ(1 − γ5)q

′,

O 4 = d̄αγμ(1 − γ5)bβ

∑
q′

q̄′
βγ μ(1 − γ5)q

′
α,

O 5 = d̄γμ(1 − γ5)b
∑

q′
q̄′γ μ(1 + γ5)q

′,

O 6 = d̄αγμ(1 − γ5)bβ

∑
q′

q̄′
βγ μ(1 + γ5)q

′
α,

O 7 = 3

2
d̄γμ(1 − γ5)b

∑
q′

eq′ q̄′γ μ(1 + γ5)q
′,

O 8 = 3

2
d̄αγμ(1 − γ5)bβ

∑
q′

eq′ q̄′
βγ μ(1 + γ5)q

′
α,

O 9 = 3

2
d̄γμ(1 − γ5)b

∑
q′

eq′ q̄′γ μ(1 − γ5)q
′,

O 10 = 3

2
d̄αγμ(1 − γ5)bβ

∑
q′

eq′ q̄′
βγ μ(1 − γ5)q

′
α, (3)

with d, b, q, and q′ being quark fields and α and β being colour 
indices.

Under the factorization hypothesis, the weak decay amplitudes 
can be expressed as

〈π−N+|Heff|�0
b〉 = iηN uN/pπ−(1 − γ5)u�b , (4)

〈ρ−p|Heff|�0
b〉 = ηpmρuN/ερ−(1 − γ5)u�b , (5)

where ερ− is the polarization vector of ρ− , uN and u�b are the 
spinors for N+(1440) and �b , respectively,

ηN = G F√
2

fπ F �b→N+
{

a2 V ub V ∗
ud

− Vtb V ∗
td

[
(a4 + a10) − 2m2

π (a6 + a8)

(mu + md)mb

]}
, (6)

ηp = G F√
2

fρ F �b→p {
a2 V ub V ∗

ud − Vtb V ∗
td [(a4 + a10)]

}
, (7)

with fπ being the decay constant of the pion, F �b→N+
and F �b→p

being the form factors for the transition �b → N+(1440) and 
�b → p, respectively, and ai = ci + ci−1/Nc for even i.

Because of the non-perturbative effects of strong interactions, 
there can be a relative strong phase between the coupling con-
stants of Ĥ1 and Ĥ2. We will denote this relative phase by δ and 
treat it as a free parameter. The strong decay amplitudes are then 
expressed as

〈pπ0|Ĥ1|N+〉 = ig1upγ5uN , (8)

and

〈π0π−|Ĥ2|ρ−〉 = eiδ g2(pπ− − pπ0) · ερ− , (9)

respectively, where the effective coupling constants g1 and g2 can 
be expressed as

g2
1 = 8πm2

N�N+→Nπ

3λN(m2
N + m2

ρ − 2mNmp − m2
π )

, (10)

g2
2 = 6πm2

ρ�ρ−→π0π−

λ3
ρ

, (11)

with mp being the mass of proton, �N+→Nπ and �ρ−→π0π−
being the partial decay widths for N+(1440) → N(939)π and 
ρ−(770) → π0π− , respectively, and

λN = 1

2mN

√[
m2

N − (mp + mπ )2
] · [m2

N − (mp − mπ )2
]
, (12)

λρ = 1

2

√
m2

ρ − 4m2
π . (13)

The differential CP asymmetry is then defined as

ACP = |M |2 − ∣∣M̄ ∣∣2

|M |2 + ∣∣M̄ ∣∣2
, (14)

where M̄ is the decay amplitude of the CP conjugate process, 

�0
b → pπ+π0, and the overlines above |M |2 and 

∣∣∣M̄
∣∣∣2

represent 
averaging and summing over the spin states of the initial and final 
particles, respectively. After some algebra, one has

|M |2 =
{
|λ1|2

[
(m2

�b
− s−)(s0 − m2

p) − m2
π (m�b − mp)2 + m4

π

]

+ |λ2|2
[
(m2

�b
− s0)(s− − m2

p) − m2
π (m�b − mp)2 + m4

π

]

+ 2R
(
λ1λ

∗
2

) [
s0s− + m�b mp(m2

�b
− m�b mp

+ m2
p − s0 − s−) − m4

π

]}

+
{

m�b → −m�b

}
, (15)

where s− is the invariant mass squared of the system pπ− ,

λ1 = m2
�b

− s0

m�b − mp

g1

sN
ηN + eiδ g2

sρ
mρηp, (16)

λ2 = m�b (mp − mN) + mpmN − s0

m�b − mp

g1

sN
ηN − eiδ g2

sρ
mρηp, (17)

and sN = s0 −m2
N + imN�N , sρ = s −m2

ρ + imρ�ρ . In order to obtain 

the expression for 
∣∣∣M̄ ∣∣∣2

, all one needs to do is to replace the CKM 
matrix elements in Eq. (15) with their complex conjugates.

In order to see where the CP asymmetry arises, let’s first display 
the weak and strong phases in λ1 and λ2 explicitly. For a fixed 
point in the phase space, λ1 and λ2 can be expressed as

λi = λTree
i ei(φTree

i +αTree
i ) + λ

Penguin
i ei(φPenguin

i +α
Penguin
i ), (18)

where i = 1, 2, λTree
i and λPenguin

i are the tree and penguin parts 
of λi , respectively, φTree

i and φPenguin
i are the corresponding weak 

phases, which take the values

φTree
i = Arg

(
V ub V ∗

ud

)
, (19)
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