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In this letter, we revise the QED gauge invariance for the hadron tensor of Drell–Yan type processes with 
the transversely polarized hadron. We perform our analysis within the Feynman gauge for gluons and 
make a comparison with the results obtained within the light-cone gauge. We demonstrate that QED 
gauge invariance leads, first, to the need of a non-standard diagram and, second, to the absence of gluon 
poles in the correlators 〈ψ̄γ⊥ A+ψ〉 related traditionally to dT (x, x)/dx. As a result, these terms disappear 
from the final QED gauge invariant hadron tensor. We also verify the absence of such poles by analyzing
the corresponding light-cone Dirac algebra.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the recent times, we have observed the renaissance in the 
nucleon structure studies through the Drell–Yan type processes in 
the existing (FermiLab, Relativistic Heavy Ion Collider, see [1,2]) 
and future (J-Parc, NICA) experiments. One of the most interest-
ing subjects of such experimental studies in this direction is the 
so-called single spin asymmetry (SSA) which is expressed with the 
help of the hadron tensor, see for instance [3] or [4,5].

Lately, we have reconsidered [6] this process in the contour 
gauge. We have found that there is a contribution from the non-
standard diagram which produces the imaginary phase required to 
have the SSA. This additional contribution leads to an extra factor 
of 2 for the asymmetry. This conclusion was supported by analysis 
of the QED gauge invariance of the hadron tensor.

In comparison, the analysis presented in [7] which uses the ax-
ial and Feynman gauges does not support the latter conclusion. 
For this reason, we perform here the detailed analysis of hadron 
tensor in the Feynman gauge with the particular emphasis on the 
QED gauge invariance. We find that the QED gauge invariance can 
be maintained only by taking into account the non-standard dia-
gram. Moreover, the results in the Feynman and contour gauges 
coincide if the gluon poles in the correlators 〈ψ̄γ⊥ A+ψ〉 are ab-
sent. This is in agreement with the relation between gluon poles 
and the Sivers function which corresponds to the “leading twist” 
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Dirac matrix γ + . We confirm this important property by compar-
ing the light-cone dynamics for different correlators.

As a result, we derive the QED gauge invariant hadron tensor 
which completely coincides with the expression obtained within 
the light-cone contour gauge for gluons, see [6].

2. Kinematics

We study the hadron tensor which contributes to the single 
spin (left-right) asymmetry measured in the Drell–Yan process 
with the transversely polarized nucleon (see Fig. 1):

N(↑↓)(p1) + N(p2) → γ ∗(q) + X(P X )

→ �(l1) + �̄(l2) + X(P X ). (1)

Here, the virtual photon producing the lepton pair (l1 + l2 = q) has 
a large mass squared (q2 = Q 2) while the transverse momenta are 
small and integrated out. The left-right asymmetry means that the 
transverse momenta of the leptons are correlated with the direc-
tion S × ez where Sμ implies the transverse polarization vector of 
the nucleon while ez is a beam direction [8].

Since we perform our calculations within a collinear factoriza-
tion, it is convenient to fix the dominant light-cone directions as

p1 ≈ Q

xB
√

2
n∗ , p2 ≈ Q

yB
√

2
n,

n∗ μ = (1/
√

2, 0T , 1/
√

2), nμ = (1/
√

2, 0T , −1/
√

2). (2)

So, the hadron momenta p1 and p2 have the plus and minus dom-
inant light-cone components, respectively. Accordingly, the quark 
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Fig. 1. The Feynman diagrams which contribute to the polarized Drell–Yan hadron tensor.

and gluon momenta k1 and � lie along the plus direction while the 
antiquark momentum k2 – along the minus direction. The photon 
momentum reads (see Fig. 1)

q = l1 + l2 = k1 + k2 (3)

which, after factorization, will take the form:

q = x1 p1 + yp2 + qT . (4)

3. The DY hadron tensor

We work within the Feynman gauge for gluons. The standard 
hadron tensor generated by the diagram depicted in Fig. 1 (the left 
panel) reads

dWμν
(Stand.) =

∫
d4k1 d4k2 δ(4)(k1 + k2 − q)

×
∫

d4��
(A) [γβ ]
α (k1, �) �̄[γ −](k2)

× tr
[
γ μγ βγ νγ +γ α S(� − k2)

]
, (5)

where

�
(A) [γβ ]
α (k1, �) = F2

[
〈p1,S T |ψ̄(η1)γβ g Aα(z)ψ(0)|S T ,p1〉

]
, (6)

�̄[γ −](k2) = F1

[
〈p2|ψ̄(η2)γ

−ψ(0)|p2〉
]
. (7)

Throughout this paper, F1 and F2 denote the Fourier transforma-
tion with the measures

d4η2 eik2·η2 and d4η1 d4z e−ik1·η1−i�·z, (8)

respectively, while F−1
1 and F−1

2 mark the inverse Fourier trans-
formation with the measures

dy eiyλ and dx1dx2 eix1λ1+i(x2−x1)λ2 . (9)

We now implement the factorization procedure (see for instance 
[9,11]) which contains the following steps: (a) the decomposition 
of loop integration momenta around the corresponding dominant 
direction: ki = xi p + (ki · p)n + kT within the certain light cone 
basis formed by the vectors p and n (in our case, n∗ and n); 
(b) the replacement: d4ki =⇒ d4ki dxiδ(xi − ki · n) that introduces 
the fractions with the appropriated spectral properties; (c) the de-
composition of the corresponding propagator products around the 
dominant direction. In Eqn. (5), we have (here, xij = xi − x j)

S(� − k2) = S(x21 p1 − yp2)

+ ∂ S(� − k2)

∂�ρ

∣∣∣∣∣
k2=yp2

�=x21 p1

�T
ρ + . . . ; (10)

(d) the use of the collinear Ward identity:

∂ S(k)

∂kρ
= S(k)γρ S(k), S(k) = −/k

k2 + iε
;

(e) performing of the Fierz decomposition for ψα(z) ψ̄β(0) in the 
corresponding space up to the needed projections.

After factorization, the standard tensor, see Eqn. (5), is split 
into two terms: the first term includes the correlator without the 
transverse derivative, while the second term contains the correla-
tor with the transverse derivative, see Eqns. (10) and (16)–(18).

The non-standard contribution comes from the diagram de-
picted in Fig. 1 (the right panel). The corresponding hadron tensor 
takes the form [6]:

dWμν
(Non-stand.)

=
∫

d4k1 d4k2 δ(4)(k1 + k2 − q)tr
[
γ μF(k1)γ

ν�̄(k2)
]
, (11)

where the function F(k1) reads

F(k1) = S(k1)γ
α

∫
d4η1 e−ik1·η1

× 〈p1, S T |ψ̄(η1) g Aα(0)ψ(0)|S T , p1〉 . (12)

For convenience, we introduce the unintegrated tensor Wμν for 
the factorized hadron tensor Wμν of the process. It reads

Wμν =
∫

d2�qT dWμν = 2

q2

∫
d2�qT δ(2)(�qT )

× i

∫
dx1 dy

[
δ(x1/xB − 1)δ(y/yB − 1)

]
Wμν

. (13)

After calculation of all relevant traces in the factorized hadron 
tensor and after some algebra, we arrive at the following con-
tributions for the unintegrated hadron tensor (which involves all 
relevant contributions except the mirror ones): the standard dia-
gram depicted in Fig. 1, the left panel, gives us

Wμν
(Stand.) +Wμν

(Stand., ∂⊥)

= q̄(y)

{
− pμ

1

y
εν S T −p2

∫
dx2

x1 − x2

x1 − x2 + iε
B(1)(x1, x2)
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