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Bekenstein’s generalized second law (GSL) of thermodynamics asserts that the sum of black-hole entropy, 
SBH = Ac3/4h̄G (here A is the black-hole surface area), and the ordinary entropy of matter and 
radiation fields in the black-hole exterior region never decreases. We here re-analyze an intriguing 
gedanken experiment which was designed by Bekenstein to challenge the GSL. In this historical gedanken 
experiment an entropy-bearing box is lowered into a charged Reissner–Nordström black hole. For the GSL 
to work, the resulting increase in the black-hole surface area (entropy) must compensate for the loss of 
the box’s entropy. We show that if the box can be lowered adiabatically all the way down to the black-
hole horizon, as previously assumed in the literature, then for near-extremal black holes the resulting 
increase in black-hole surface-area (due to the assimilation of the box by the black hole) may become 
too small to compensate for the loss of the box’s entropy. In order to resolve this apparent violation of 
the GSL, we here suggest to use a generalized version of the hoop conjecture. In particular, assuming that 
a physical system of mass M and electric charge Q forms a black hole if its circumference radius rc is 
equal to (or smaller than) the corresponding Reissner–Nordström black-hole radius rRN = M +

√
M2 − Q 2, 

we prove that a new (and larger) horizon is already formed before the entropy-bearing box reaches the 
horizon of the original near-extremal black hole. This result, which seems to have been overlooked in 
previous analyzes of the composed black-hole-box system, ensures the validity of Bekenstein’s GSL in 
this famous gedanken experiment.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The legend says [1,2] that it all began with a cup of tea and two 
genius physicists, Professor John Archibald Wheeler and his young 
student Jacob David Bekenstein, who tried to figure out what hap-
pens to the second law of thermodynamics when the cup goes 
down a black hole.

In this gedanken experiment, the thermal entropy of the tea 
disappears behind the black-hole horizon. Hence, at first glance, it 
seems that the second law of thermodynamics, which states that 
entropy cannot decrease, is violated in this physical process. In 
particular, to external observers it seems that the entropy of the 
visible universe decreases as the (entropy-bearing) object disap-
pears into the black hole.

It was while attempting to resolve this apparent paradox that 
Bekenstein came up with the bold idea to associate entropy with 
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black holes – entropy as the measure of (missing) information 
about the black-hole internal state which is inaccessible to external 
observers [3]. In particular, the formal analogy between the second 
law of thermodynamics and Hawking’s area theorem [4], which 
states that black-hole surface area cannot decrease [5], motivated 
Bekenstein to conjecture that the required black-hole entropy [6]
is proportional to its surface area A [3]:

SBH = kB A

4l2P
. (1)

The Planck length lP = √
h̄G/c3 was introduced into (1) by Wheeler 

on dimensional grounds [2,7], whereas the correct proportionality 
coefficient, 1/4, was later found by Hawking [8].

Using the conjectured proportionality (1) between black-hole 
entropy and horizon area, Bekenstein proposed a generalized ver-
sion of the second law of thermodynamics [3]: The sum of black-hole 
entropy, SBH , and the ordinary entropy of matter and radiation fields 
in the black-hole exterior region, S, cannot decrease. This conjecture 
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therefore asserts that physical processes involving black holes are 
characterized by the relation

�(SBH + S) ≥ 0. (2)

The generalized second law of thermodynamics (GSL) provides 
a unique relation between thermodynamics, gravitation, and quan-
tum theory [9]. It therefore allows us a unique glimpse into the 
elusive theory of quantum gravity. It should be emphasized, how-
ever, that despite the general agreement that the GSL reflects a 
fundamental aspect of the quantum theory of gravity, there cur-
rently exists no general proof (that is, a proof which is based 
on the fundamental microscopic laws of quantum gravity) for the 
validity of this principle. It is therefore of physical interest to con-
sider gedanken experiments in order to test the validity of the GSL 
in various physical situations.

2. Bekenstein’s universal entropy bound

In order to challenge the GSL, Bekenstein [3,10] analyzed a 
gedanken experiment in which a finite-sized object with negligi-
ble self-gravity is assimilated into a black hole [11]. In particular, 
Bekenstein showed that the capture of a spherical body of proper 
mass μ and radius R by a black hole produces an unavoidable in-
crease �A in the black-hole surface area, whose minimal value is 
given by the relation [3,12]

(�A)min = 8πμR. (3)

Taking cognizance of Eqs. (1), (2), and (3), Bekenstein [3,10]
conjectured the existence of a universal upper bound,

S ≤ 2πμR

h̄
, (4)

on the entropy content of physical systems with negligible self-
gravity [13–16]. In particular, as emphasized by Bekenstein [3,10], 
an entropy bound of the form (4) ensures that the generalized sec-
ond law of thermodynamics (2) is respected in a physical process 
in which a spherical body with negligible self-gravity is captured 
by a black hole [17]. It is worth mentioning that Bekenstein and 
others [10,18–20] provided compelling evidence that the entropy 
bound (4) is respected in various physical systems in which grav-
ity is negligible.

The main goal of the present paper is to highlight a non-trivial 
aspect of Bekenstein’s famous gedanken experiment [3]. In par-
ticular, we shall challenge the GSL in a gedanken experiment in 
which an entropy-bearing spherical body is slowly lowered into a 
charged Reissner–Nordström black hole. We shall show below that 
if the body can be lowered adiabatically all the way down to the 
black-hole horizon, as previously assumed in the literature, then 
for near-extremal black holes the unavoidable increase in black-
hole surface-area [see Eq. (21) below] may become too small to 
compensate for the loss of the body’s entropy [21]. We shall fur-
ther develop a possible resolution of this apparent paradox. In 
particular, we shall show that a generalized version of the hoop 
conjecture [22] may ensure the validity of Bekenstein’s GSL in this 
type of gedanken experiments.

3. Challenging the generalized second law of thermodynamics

We consider an entropy-bearing box of proper radius R and 
rest mass μ which is lowered towards a Reissner–Nordström (RN) 
black hole of mass M and electric charge Q . The external gravita-
tional field of the RN black-hole spacetime is described by the line 
element

ds2 = −
(

1 − 2M

r
+ Q 2

r2

)
dt2 +

(
1 − 2M

r
+ Q 2

r2

)−1
dr2

+ r2d�2. (5)

The black-hole (outer and inner) horizons are located at

r± = M ±
√

M2 − Q 2. (6)

The test-particle approximation imposes the constraints

μ � R � M. (7)

These strong inequalities imply that the lowered body (the entropy-
bearing box) has negligible self-gravity and that it is much smaller 
than the geometric size of the black hole.

Our goal is to challenge the GSL in the most extreme situa-
tion. We shall therefore consider the case of an entropy-bearing 
body which is slowly lowered towards the black hole. As shown by 
Bekenstein [3], this strategy guarantees that the energy delivered 
to the black hole when it swallows the body is as small as possi-
ble [23]. The Bekenstein strategy of lowering the body adiabatically 
into the black hole also guarantees that, for given parameters of 
the body, the resulting increase in the surface area (entropy) of 
the black hole is minimized [3].

The red-shifted energy (energy-at-infinity) of a static body 
which is located at a radial coordinate r in the RN black-hole 
spacetime is given by [3]

E(r) = μ

√
1 − 2M

r
+ Q 2

r2
. (8)

This energy can be expressed in terms of the proper distance l of 
the body’s center of mass above the black-hole horizon. Using the 
relation [3]

l(r) =
r∫

r+

√
grrdr, (9)

and taking cognizance of (5), one finds the exact relation

l(r) = √
(r − r+)(r − r−) + 2M ln

(√
r − r+ + √

r − r−√
r+ − r−

)
. (10)

From (10) one finds

r(l) = r+ + (r+ − r−)
l2

4r2+
[1 + O (l2/r2+)] (11)

in the near-horizon l � r+ region. Substituting (11) into (8), one 
finds [3]

E(l) = μl(r+ − r−)

2r2+
(12)

for the red-shifted energy of the box in the RN black-hole space-
time [24–27].

Suppose the entropy-bearing box is lowered slowly towards the 
black hole until its center of mass lies a proper distance l0 (with 
l0 ≥ R) above the horizon. The box is then released to fall freely 
into the black hole. The energy (energy-at-infinity) delivered to the 
black hole when it captures the body is given by E(l = l0). The 
increase

�M = E(l0) = μl0(r+ − r−)

2r2+
(13)

in the mass of the RN black hole results in a change [see 
Eq. (6)] [28]
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