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In the present paper we examine the accuracy of the quasiclassical approach on the example of small-
angle electron elastic scattering. Using the quasiclassical approach, we derive the differential cross section 
and the Sherman function for arbitrary localized potential at high energy. These results are exact in the 
atomic charge number and correspond to the leading and the next-to-leading high-energy small-angle 
asymptotics for the scattering amplitude. Using the small-angle expansion of the exact amplitude of 
electron elastic scattering in the Coulomb field, we derive the cross section and the Sherman function 
with a relative accuracy θ2 and θ1, respectively (θ is the scattering angle). We show that the correction 
of relative order θ2 to the cross section, as well as that of relative order θ1 to the Sherman function, 
originates not only from the contribution of large angular momenta l � 1, but also from that of l ∼ 1. This 
means that, in general, it is not possible to go beyond the accuracy of the next-to-leading quasiclassical 
approximation without taking into account the non-quasiclassical terms.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the high-energy QED processes in the atomic field, the char-
acteristic angles θ between the momenta of final and initial parti-
cles are small. Therefore, the main contribution to the amplitudes 
of the processes is given by the large angular momenta l ∼ ερ ∼
ε/� ∼ 1/θ , where ε, ρ , and � are the characteristic energy, impact 
parameter, and momentum transfer, respectively (h̄ = c = 1). The 
quasiclassical approach provides a systematic method to account 
for the contribution of large angular momenta. It was successfully 
used for the description of numerous processes such as charged 
particle bremsstrahlung, pair photoproduction, Delbrück scatter-
ing, photon splitting, and others [1–8]. The accurate description 
of such QED processes is important for the data analysis in mod-
ern detectors of elementary particles. The quasiclassical approach 
allows one to obtain the results for the amplitudes not only in the 
leading quasiclassical approximation but also with the first quasi-
classical correction taken into account [9–14]. We stress the dif-
ference between the quasiclassical approximation and the eikonal 
approximation often used in the description of the high-energy 
processes (see, e.g., Ref. [15]). This difference was recognized al-
ready in Ref. [3] where it was shown that the Coulomb corrections 
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to the cross section of e+e− pair photoproduction can be obtained 
within the quasiclassical approach but not within the eikonal ap-
proximation.

A natural question arises: how far can we advance in increas-
ing accuracy within the quasiclassical framework? In this paper we 
examine this question by considering the process of high-energy 
small-angle scattering of polarized electrons in the atomic field. 
The general form of this cross section reads (see, e.g., Ref. [15])

dσ

d�
= 1

2

dσ0

d�

[
1 + S ξ · (ζ 1 + ζ 2) + T ijζ i

1ζ
j

2

]
, ξ = p × q

|p × q| ,

(1)

where dσ0/d� is the differential cross section of unpolarized scat-
tering, p and q are the initial and final electron momenta, respec-
tively, ζ 1 is the polarization vector of the initial electron, ζ 2 is the 
detected polarization vector of the final electron, S is the so-called 
Sherman function, and T ij is some tensor. In Section 2 we use the 
quasiclassical approach to derive the small-angle expansion of the 
cross section of electron elastic scattering in arbitrary localized po-
tential. As for the unpolarized cross section dσ0/d�, its leading 
and subleading terms with respect to the scattering angle θ are 
known for a long time [16]. They can both be calculated within the 
quasiclassical framework. We show that the Sherman function S in 
the leading quasiclassical approximation is proportional to θ2. We 
compare this result with that obtained by means of the expansion 
with respect to the parameter Zα [17–21] (Z is the nuclear charge 
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number, α ≈ 1/137 is the fine structure constant). The leading in 
Zα contribution to the Sherman function is due to the interfer-
ence between the first and second Born terms in the scattering 
amplitude. In contrast to the quasiclassical result (proportional to 
θ2), it scales as θ3 at small θ . There is no contradiction between 
these two results because the expansion of our quasiclassical re-
sult with respect to Zα starts with (Zα)2. Therefore, depending on 
the ratio Zα/θ , the dominant contribution to the Sherman func-
tion is given either by the leading quasiclassical approximation or 
by the interference of the first two terms of the Born expansion. 
One could imagine that the terms O (θ3) in the function S can 
be ascribed to the next-to-leading quasiclassical correction and, 
therefore, they come from the contribution of large angular mo-
menta. However, by considering the case of a pure Coulomb field, 
we show in Section 3 that the account for the angular momenta 
l ∼ 1 is indispensable for these terms. Thus, we are driven to the 
conclusion that, in general, it is not possible to go beyond the ac-
curacy of the next-to-leading quasiclassical approximation without 
taking into account the non-quasiclassical terms.

2. Scattering of polarized electrons in the quasiclassical 
approximation

It is shown in Ref. [22] that the wave function ψp(r) in the 
arbitrary localized potential V (r) can be written as

ψp(r) = [g0(r, p) − α · g1(r, p) − � · g2(r, p)]u p ,

u p =
√

ε + m

2ε

(
φ

σ · p

ε + m
φ

)
, (2)

where φ is a spinor, α = γ 0γ , � = γ 0γ 5γ , m is the electron 
mass, and σ are the Pauli matrices. In this section we assume that 
m/ε � 1. In the leading quasiclassical approximation, the explicit 
forms of the functions g0 and g1, as well as the first quasiclassi-
cal correction to g0, are obtained in Ref. [9]. The first quasiclassical 
correction to g1 and the leading contribution to g2 are derived in 
Ref. [14]. The asymptotic form of the function ψp(r) at large dis-
tances r reads

ψp(r) ≈ ei p·ru p + eipr

r
[G0 − α · G1 − � · G2] u p . (3)

The functions G0, G1, and G2 can be easily obtained from the ex-
pressions for g0, g1, and g2 in Ref. [14]:

G0 = f0 + δ f0 , G1 = −�⊥
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where
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√
x2 + ρ2 . (5)

Here � = q − p, q = pr/r, ρ is a two-dimensional vector per-
pendicular to the initial momentum p, and the notation X⊥ =
X − (X · np)np is used for any vector X , np = p/p. For small scat-
tering angle θ � 1, we have δ f0 ∼ δ f1 ∼ θ f0. Taking this relation 
into account, we obtain the following expressions for dσ0

d�
, T ij , and 

S in Eq. (1)

dσ0

d�
= | f0|2

[
1 + 2 Re

δ f0

f0

]
, (6)

T ij = δi j + θε i jkξk ,

S = −mθ

ε
Im

δ f1

f0
. (7)

In Eqs. (6) and (7) we keep only the leading and the next-to-
leading terms with respect to θ in dσ0/d� and T ij , and the leading 
term in the function S . The form of T ij is a simple consequence of 
helicity conservation in ultrarelativistic scattering. The expression 
for dσ0/d� coincides with that obtained in the eikonal approxi-
mation [16]. Note that f0 → − f ∗

0 , δ f0 → δ f ∗
0 , and δ f1 → δ f ∗

1 at 
the replacement V → −V as it simply follows from Eq. (5). There-
fore, the quasiclassical result for the Sherman function S , Eq. (7), 
is invariant with respect to the replacement V → −V . In con-
trast, the term 2 Re(δ f0/ f0) in dσ0/d� in Eq. (6) results in the 
charge asymmetry in scattering, i.e., in the difference between 
the scattering cross sections of electron and positron, see, e.g., 
Ref. [15]. Similarly, the account for the first quasiclassical correc-
tion leads to the charge asymmetry in lepton pair photoproduction
and bremsstrahlung in an atomic field [13,14,22].

Let us specialize Eqs. (6) and (7) to the case of a Coulomb field. 
Substituting V (r) = −Zα/r in Eq. (5), we have

f0 = 2η

εθ2−2iη

�(1 − iη)

�(1 + iη)
,

δ f0

f0
= 1

4
πθηh(η) ,

δ f1

f0
= − πθηh(η)

4(1 + 2iη)
,

h(η) = �(1 + iη)�(1/2 − iη)

�(1 − iη)�(1/2 + iη)
, (8)

where η = Zα and �(x) is the Euler � function. Then, from Eqs. (6)
and (7) we obtain

dσ0

d�
= 4η2

ε2θ4

[
1 + πθη

2
Re h(η)

]
, (9)

S = πmηθ2

4ε
Im

h(η)

1 + 2iη
. (10)

The remarkable observation concerning the obtained Sherman 
function (10) is that it scales as θ2 while the celebrated Mott re-
sult [17] for the leading in η contribution to S scales as θ3 ln θ . 
There is no contradiction because the expansion of (10) in η starts 
with η2, while the Mott result is proportional to η. Thus, the Mott 
result is not applicable if θ � η. In the next section we obtain the 
result (10), along with smaller corrections with respect to θ , by ex-
panding the exact Coulomb scattering amplitude represented as a 
sum of partial waves. We show that the Mott result is recovered 
in the order θ3, as it should be.

Let us now qualitatively discuss the influence of the finite nu-
clear size on the cross section dσ0/d� and the Sherman func-
tion S . We use the model potential

V (r) = − η√
r2 + R2

, (11)

where R is the characteristic nuclear size. For this potential we 
take all integrals in Eq. (4) and obtain
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