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A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well 
defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence 
higher than three. It inherits the advantage of the original regularization method to create new vertices 
to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is 
less ambiguity in its construction in comparison with the original method. The regularization procedure 
for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum 
cosmology, which leads to a new quantum dynamics of the cosmological model.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The singularity theorem of general relativity (GR) is a strong 
signal that the classical Einstein’s equations cannot be trusted 
when the spacetime curvature grows unboundedly. It is widely 
expected that a quantum theory of gravity would overcome the 
singularity problem of classical GR. A very lesson that one can 
learn from GR is that the spacetime geometry itself becomes dy-
namical. To carry out this crucial idea raised by Einstein 100 years 
ago, loop quantum gravity (LQG) is notable for its nonpertuibative 
and background-independent construction [1–4]. The kinematical 
Hilbert space of LQG consists of cylindrical functions over finite 
graphs embedded in the spatial manifold. The quantum geomet-
ric operators corresponding to area [5,6], volume [5,7,8], length 
[9–11], ADM energy [12] and quasi-local energy [13], etc. have 
discrete spectrums. The LQG quantization framework can also be 
generalized to high-dimensional GR [14] and scalar-tensor theories 
of gravity [15,16]. A crucial topic now in LQG is its quantum dy-
namics, which is being attacked from both the canonical LQG and 
the path integral approach of spin foam models. In the canoni-
cal approach a suitable regularization procedure was first proposed 
by Thiemann to obtain well-defined Hamiltonian constraint oper-
ators [17]. The Hamiltonian constraint operators obtained in this 
way will attach new arcs (edges) and hence create new trivalent 
co-planar vertices to the graph of the cylindrical function upon 
which they act [17,18]. The quantum dynamics determined by the 
Hamiltonian constraint operator is well tested in the symmetric 
models of loop quantum cosmology (LQC) [19]. The classical big 
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bang singularities are resolved by quantum bounces in the models 
[20–22]. However, there are ambiguities in the graph-dependent 
triangulation construction of this operator. There is no unique way 
to average over different choices of the triangulation. Moreover, in 
order to obtain the on shell anomaly-free quantum algebra of the 
Hamiltonian constraint operator [23], one has to employ degen-
erate triangulation at the co-planar vertices of spin networks in 
the regularization procedure of the Hamiltonian.1 This treatment 
implies that the regularization procedure has essentially neglected 
the Hamiltonian at the co-planar vertices before acting the regu-
lated operator on them. Otherwise, this kind of Hamiltonian con-
straint operator would generate an anomalous algebra in the full 
theory, unless one inputs certain unnatural requirement to the in-
teraction manner of the edges of the graph and the arcs added by 
the Hamiltonian operator [24]. The Hamiltonian constraint opera-
tors proposed recently in [25–27] do not generate new vertices on 
the graph of the cylindrical function and hence are anomaly-free 
on shell. However this kind of action cannot match the quantum 
dynamics of spin foam models where new vertices are unavoid-
able in their construction [28]. A regularization of the Hamiltonian 
constraint compatible with the spinfoam dynamics was consid-
ered in [29]. However, the resulted Hamiltonian operator acts non-
trivially on the vertices that it created and thus has still an anoma-
lous quantum algebra. It is therefore natural to ask the question 
whether one can construct some Hamiltonian constraint operator 
with the following properties: (i) it is well defined in a suitable 
Hilbert space, symmetric and anomaly-free; (ii) it generates new 

1 Thanks to the remark from Thomas Thiemann.
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vertices; (iii) its action on co-planar vertices is not neglected by 
some special regularization procedure, and there is no special re-
striction on the interaction manner of the edges of the graph and 
the arcs added by its action. We will show that the answer is af-
firmative. An alternative quantization of the Hamiltonian constraint 
in LQG possessing the above three properties will be proposed. The 
regularization procedure of the Hamiltonian operator can also be 
applied to LQC models.

The Hamiltonian formalism of GR is formulated on a 4-dimen-
sional manifold M = R × �, with � being a 3-dimensional spatial 
manifold. In connection dynamics, the canonical variables on �

are the SU(2)-connection Ai
a and the densitized triad Ẽb

j , with the 
only nontrivial Poisson bracket {Ai

a(x), Ẽb
j (y)} = κβδ3(x, y), where 

κ ≡ 8πG and β is the Barbero–Immirzi parameter. The Hamilto-
nian constraint reads

H(N) = 1

2κ

∫
�

d3x N
Ẽa

i Ẽb
j√

det (q)

(
εi jk F k

ab − 2(1 + β2)K i[a K j
b]

)

=: H E(N) − T (N), (1)

where F i
ab ≡ 2∂[a Ai

b] + ε i
jk A j

a Ak
b is the curvature of Ai

a , K i
a is the 

extrinsic curvature of �, and det (q) is the determinate of 3-metric 
qab ≡ ei

ae j
bδi j with ei

a being the co-triad. H E (N) and T (N) are called 
the Euclidean and Lorentzian terms of the Hamiltonian constraints 
respectively. Both H E (N) and T (N) depend on the canonical vari-
ables in non-polynomial ways. Besides the indication of spin foam 
models, it is argued in [30] that the momentum variables in H E (N)

also imply the creation of new vertices by its action. Thus we 
adopt the so-called semi-quantized regularization approach de-
veloped in [31] to derive a new Hamiltonian constraint operator, 
which creates new vertices as well. The Hamiltonian is not ne-
glected at the co-planar vertices of spin networks by the regular-
ization. But the result of its action on the co-planar vertices is zero. 
Hence it has an anomaly-free algebra on shell.

Let us first consider H E (N). By introducing a characteristic 
function χε(x, y) such that lim

ε→0
χε(x, y)/ε3 = δ3(x, y) and using 

the point-splitting scheme, it can be regularized as

H E(N) = 1

2κ
lim
ε→0

∫
�

d3x N(x)V −1/2
(x,ε) εi jk F i

ab(x)Ẽa
j(x)

×
∫
�

d3 y χε(x, y)Ẽb
k(y)V −1/2

(y,ε) , (2)

where V (x,ε) := ε3
√

det(q)(x). Since the volume operator has a 
large kernel, the naive inverse volume operator is not well defined. 
However, one can use the idea in [32] to circumvent this problem 
by defining a permissible inverse square root of volume operator 
as

̂
V −1/2

(y,ε) := lim
λ→0

(V̂ (y,ε) + λ�3
p)−1 V̂ 1/2

(y,ε), (3)

where V̂ (y,ε) is the standard volume operator in LQG (see [7]) cor-
responding to the volume of the cube with center y and radial ε . 
It is easy to see that qualitatively V̂ −1/2 has the same properties 
as V̂ . Thus we can promote the classical volume in (2) into its 
quantum version (3) and replace both densitized triads in (2) by 
corresponding operators Êb

k(y) = −iβ�2
pδ/δAk

b(y) where �2
p = h̄κ . 

Acting on a cylindrical function fγ , the result formally reads

(−iβ�2
p

)2

2κ
lim
ε→0

1∫
0

dt′
1∫

0

dt

⎧⎨
⎩

∑
e′ �=e

χε

(
e′(t′), e(t)

)
N(e′(t′))V −1/2

(e′(t′),ε)

×
[
εi jk F i

ab(e′(t′))ė′ a(t′)ėb(t)
]

X j
e′(t′)Xk

e (t)
̂

V −1/2
(e(t),ε)

+
∑

e

χε

(
e(t′), e(t)

)
N(e(t′))V −1/2

(e(t′),ε)

[
εi jk F i

ab(e(t′))ėa(t′)ėb(t)
]

×
[
θ(t, t′)Xkj

e (t, t′) + θ(t′, t)X jk
e (t′, t)

]
̂

V −1/2
(e(t),ε)

}
· fγ , (4)

where θ(t, t′) = 1 for t′ > t and zero otherwise,
Xk

e (t) := tr[(he(0,t)τkhe(t,1))
T ∂/∂he(0,1)], X jk

e (t′, t) :=
tr[(he(0,t′)τ jhe(t′,t)τkhe(t,1))

T ∂/∂he(0,1)], here τk := − i
2 σk with σk

being the Pauli matrices, and T denotes transpose. Partitioning 
of the domain [0, 1] as N segments by inputing N − 1 points, 
0 = t0, t1, · · · , tN−1, tN = 1, and setting �tn ≡ tn − tn−1 ≡ δ, the 
integral in (4) can be replaced by the Riemann’s sum in a limit. 
Then (4) reduces to

(−iβ�2
p

)2

2κ
lim
δ→0

lim
ε→0

δ2

⎧⎨
⎩

∑
e′ �=e

N∑
n,m=1

χε

(
e′(t′

m−1), e(tn−1)
)

× N(e′(t′
m−1))V −1/2(

e′(t′m−1),ε
)

×
[
εi jk F i

ab(e′(t′
m−1))ė′ a(t′

m−1)ėb(tn−1)
]

× X j
e′(t′

m−1)Xk
e (tn−1)

̂
V −1/2(

e(tn−1),ε
)

+
∑

e

N∑
n,m=1

χε (e(tm−1), e(tn−1)) N(e(tm−1))V −1/2(
e(tm−1),ε

)

×
[
εi jk F i

ab(e(tm−1))ėa(tm−1)ėb(tn−1)
]

×
[
θ(tn−1, tm−1)Xkj

e (tn−1, tm−1)

+ θ(tm−1, tn−1)X jk
e (tm−1, tn−1)

]
̂

V −1/2(
e(tn−1),ε

)
}

· fγ . (5)

Since the volume operator and hence ̂V −1/2
(y,ε) vanish at divalent ver-

tices, for sufficiently small ε , the only non-vanishing terms of the 
summation in (5) correspond to those of m = n = 1. Moreover, 
the terms corresponding to m = n = 1 in the second summation 
of (5), which involves only summation over e(= e′), vanish due to 
εi jk F i

ab(e(t0))ėa(t0)ėb(t0) = 0. For e �= e′ , we have

δ2 F i
ab(e′(0))ė′ a(0)ėb(0) ≈ 2

N�

sgn(e′, e)tr�
(
hαe′eτi

)
, (6)

where N� = − �(�+1)(2�+1)
3 with � a half-integer representing a spin 

representation of SU(2), αe′e is a loop formed by adding an arc be-
tween e′(δ) and e(δ), and sgn(e′, e) := sgn[εabė′ a(0)ėb(0)] is the 
orientation factor which can be promoted into its quantum op-

erator. From the property of V̂ , we know that ̂V 1/2
(v,ε) ≡ ̂

V 1/2
v is 

independent of ε . Thus we can take the trivial limit ε → 0 and 
obtain

Ĥ E
δ (N) · fγ :=

(
β�2

p

)2

κN�

∑
v∈V (γ )

Nv
̂
V −1/2

v

×
[ ∑

e∩e′=v

sgn(e′, e)εi jktr�
(
hαe′eτi

)
J j

e′ J k
e

]
̂
V −1/2

v · fγ

=:
∑

v∈V (γ )

Nv

∑
e∩e′=v

Ĥ E
v,e′e (7)
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