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In this paper, we will analyze the effects of thermal fluctuations on the stability of a black Saturn. The 
entropy of the black Saturn will get corrected due to these thermal fluctuations. We will demonstrate 
that the correction term generated by these thermal fluctuations is a logarithmic term. Then we will use 
this corrected value of the entropy to obtain bounds for various parameters of the black Saturn. We will 
also analyze the thermodynamical stability of the black Saturn in presence of thermal fluctuations, using 
this corrected value of the entropy.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

If entropy is not associated with a black hole, then the entropy 
of the universe will spontaneous reduce whenever an object with a 
finite entropy crosses the horizon. Thus, entropy has to be associ-
ated with a black hole to prevent the violation of the second law of 
thermodynamics [1,2]. In fact, black holes have more entropy than 
any other object of the same volume [3,4]. This prevents the vi-
olation of second law of thermodynamics. This maximum entropy 
of the black holes is proportional to the area of the horizon [5]. 
Thus, if S is the entropy associated with a black hole, and A is the 
area of the horizon, then the relation between S and A can be ex-
pressed as S = A/4. The observation that the entropy scales with 
the area of the black hole, instead of its volume, has motivated the 
development of the holographic principle [6,7]. The holographic 
principle states that the degrees of freedom in a region of space 
are the same as the degrees of freedom on the boundary surround-
ing that region of space. The geometry of black holes will undergo 
quantum fluctuations. These quantum corrections will lead to ther-
mal fluctuations. These thermal fluctuations will in turn generate 
correction terms for various thermodynamical quantities associ-
ated with black holes [8,9]. Thus the holographic principle can 
get modified near Planck scale [10,11]. It may be noted that even 
though the thermodynamics of black holes is expected to get cor-
rected due to thermal fluctuations, we can neglect such correction 
terms for large black holes. This is because these thermal fluctu-
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ations occur because of quantum fluctuations of the geometry of 
space–time, and such quantum fluctuations can be neglected for 
large black holes. However, as the black holes radiate Hawking ra-
diation, they tend to evaporate in course of time. Then the size of 
the black holes reduces in course of time due to the Hawking radi-
ation. As the black holes become smaller the quantum fluctuations
give more dominating contribution to the geometry of space–time. 
Thus, the thermal fluctuations cannot be neglected for small black 
holes, or for black hole at the last stages of their evaporation. The 
correction terms to the entropy of black holes coming from ther-
mal fluctuations have been calculated. It has been demonstrated 
that these correction terms are expressed as logarithmic functions 
of the original thermodynamic quantities.

The corrections to the thermodynamics of black holes have also 
been calculated using the density of microstates for asymptotically 
flat black holes [12]. This analysis has been done in the frame-
work of non-perturbative quantum general relativity. Here confor-
mal blocks of a well defined conformal field theory are associated 
with the density of states for a black hole. This density of states is 
then used to calculate the relation between the entropy of a black 
hole and the area of its horizon. The leading order relation be-
tween the entropy of a black hole and the area of its horizon is 
observed to be the standard Bekenstein entropy area relation for 
the large black holes. However, this relation between the area and 
entropy of a black hole gets corrected in this analysis. The lead-
ing order correction terms to the entropy of the black hole are 
demonstrated to be logarithmic corrections. It may be noted that 
such correction terms have also been calculated using the Cardy 
formula [13]. In fact, it has been demonstrated using this formula 
that such logarithmic correction terms will be generated for all 
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black holes whose microscopic degrees of freedom are described 
by a conformal field theory. The correction terms to the entropy of 
a BTZ black hole have been calculated using such logarithmic exact 
partition function [14]. It has been again observed that these cor-
rection terms can be expressed using logarithmic functions. It has 
also been possible to obtain logarithmic correction terms for the 
entropy of a black hole by analyzing matter fields in backgrounds 
of a black hole [15–17].

The correction terms generated from string theoretical effects 
can also be expressed using logarithmic functions [18–21]. The log-
arithmic correction terms for the entropy of a dilatonic black holes 
have been calculated [22]. Finally, the expansion of the partition 
function has also been used to calculate the correction terms for 
the entropy of a black hole [23]. Such correction terms obtained by 
using the expansion of the partition function again are logarithmic 
correction terms. The correction to the thermodynamics of black 
holes from generalized uncertainty principle has also been stud-
ied [24]. In this analysis the thermodynamics of the black holes 
gets modifies due to the generalization of the usual Heisenberg 
uncertainty principle. It has been demonstrated this modified ther-
modynamics of the black holes predicts the existence of a remnant 
for black holes. The existence of such remnants for black holes can 
have important phenomenological consequences [25].

As the quantum fluctuations can occur in all black hole geome-
tries, we expect that the thermodynamics of all black objects will 
get corrected due to thermal fluctuations. Thus, we can use the 
modified relation between the entropy and area to analyze the 
corrections for the thermodynamics of any black object. In this 
paper, we will analyze such correction terms for the thermody-
namics of black Saturn. The black Saturns are solutions to Einstein 
equations in higher dimensions. They are described by a black hole 
surrounded by a black ring [26,27]. This black ring is in thermo-
dynamical equilibrium with a spherical black hole. The thermody-
namics of black Saturn has been studied [28]. The thermodynamic 
equilibrium is obtained because of the rotation of the black ring. 
It is also possible to construct a black Saturn with a static black 
ring [29,30]. In this case, the system remains in thermodynamic 
equilibrium because of an external magnetic field. It may be noted 
that conditions for meta-stability of a black Saturn have also been 
studied [31]. It has been demonstrated that the black Saturn is 
causal stably on the closure of the domain of outer communica-
tions [32]. The relation between the black Saturn and Myers–Perry 
black hole has also been analyzed [33]. It may be noted that the 
thermodynamics of a charged dilatonic black Saturn has also been 
studied [34]. It is expected that both the black hole and black ring 
in a black Saturn will reduce in size due to the Hawking radiation. 
Thus, at a certain stage quantum fluctuations in the geometry of 
a black Saturn will also become important. To analyze the effect 
of these quantum fluctuations in the geometry of a black Saturn, 
we will need to analyze the thermal fluctuations in the thermo-
dynamics of black Saturn. So, we will study the corrections to the 
thermodynamics of a black Saturn by considering thermal fluctua-
tions around the equilibrium.

2. Black Saturn

In this section, we will review the thermodynamics of black 
Saturn. The metric for black Saturn can be written as [26]

ds2 = − H y

Hx

[
dt + (

ωψ

H y
+ q)dψ

]2

+ Hx

[
k2 P (dρ2 + dz2) + G y

H y
dψ2 + Gx

Hx
dϕ2

]
, (1)

where q and k are constants, and

Gx = μ4

μ3μ5
ρ2

G y = μ3μ5

μ4
. (2)

Here we have used

P = (μ3μ4 + ρ2)2(μ1μ5 + ρ2)(μ4μ5 + ρ2), (3)

and
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√

ρ2 + (z − ai)
2 − (z − ai) = Ri − (z − ai). (4)

The real constant parameters ai (i = 1, . . . , 5) satisfy the following 
condition,
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Furthermore, we also have
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where c1 and c2 are real constants, and
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with
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Here ωψ is expressed as

ωψ = 2

F
√
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[
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√
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+ c2
1c2 R2
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]
, (9)

where R1 and R2 are given in the relation (4). Free parameters of 
the model are fixed by [27] as

L2 = a2 − a1, (10)

and

c1 = ±
√

2(a3 − a1)(a4 − a1)

a5 − a1
. (11)
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