
Physics Letters B 751 (2015) 548–552

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Relativistic second-order dissipative hydrodynamics at finite chemical 
potential

Amaresh Jaiswal a,∗, Bengt Friman a, Krzysztof Redlich b,c

a GSI, Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
b Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw, Poland
c Extreme Matter Institute EMMI, GSI, Planckstrasse 1, D-64291 Darmstadt, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 July 2015
Received in revised form 14 October 2015
Accepted 7 November 2015
Available online 11 November 2015
Editor: J.-P. Blaizot

Starting from the Boltzmann equation in the relaxation time approximation and employing a Chapman–
Enskog like expansion for the distribution function close to equilibrium, we derive second-order evolution 
equations for the shear stress tensor and the dissipative charge current for a system of massless quarks 
and gluons. The transport coefficients are obtained exactly using quantum statistics for the phase 
space distribution functions at non-zero chemical potential. We show that, within the relaxation time 
approximation, the second-order evolution equations for the shear stress tensor and the dissipative 
charge current can be decoupled. We find that, for large values of the ratio of chemical potential to 
temperature, the charge conductivity is small compared to the coefficient of shear viscosity. Moreover, we 
show that in the relaxation-time approximation, the limiting behaviour of the ratio of heat conductivity 
to shear viscosity is qualitatively similar to that obtained for a strongly coupled conformal plasma.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

High-energy heavy ion collisions at the BNL Relativistic Heavy 
Ion Collider (RHIC) [1,2] and the CERN Large Hadron Collider (LHC) 
[3–5] create strongly interacting matter under extreme conditions 
of high temperature and density as it is believed to have existed in 
the very early universe [6,7]. At such conditions, quarks and glu-
ons are deconfined to form a new state of matter, the quark–gluon 
plasma (QGP). The QGP behaves as a strongly coupled plasma 
having the smallest shear viscosity-to-entropy density ratio, η/s
[8–13]. Relativistic hydrodynamics has been applied quite success-
fully to describe the space–time evolution of the QGP formed in 
high-energy heavy ion collisions and to estimate its transport co-
efficients [14].

In applications of hydrodynamics it is rather straightforward to 
employ the ideal (Euler) equations. The inclusion of dissipative ef-
fects in the evolution of the QGP started only a few years ago. 
However, most of the studies have focused on exploring the ef-
fects of the shear viscosity on the QGP evolution and extracting its 
magnitude from experimental measurements. Nevertheless, there 
are other sources of dissipation such as bulk viscous pressure and 
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dissipative charge current that may have a significant effect on 
the hydrodynamic evolution of the QGP. While the effects of bulk 
viscous pressure has been studied in some details [15–20], the 
dissipative charge current has been largely ignored. This may be 
attributed to the fact that at very high energies, baryon number 
and its corresponding chemical potential are negligible. However, 
at lower collision energies such as those probed in the RHIC low-
energy scan or at the upcoming experiments at the Facility for 
Antiproton and Ion Research (FAIR), baryon number can no longer 
be ignored and therefore charge diffusion may play an important 
role.

The earliest theoretical formulations of relativistic dissipative 
hydrodynamics are due to Eckart [21] and Landau–Lifshitz [22]. 
However these formulations, collectively called relativistic Navier–
Stokes theory, involve only first-order gradients and suffer from 
acausality and numerical instability due to the parabolic nature of 
the equations. Second order or extended theories by Grad [23], 
Müller [24] and Israel and Stewart (IS) [25] were introduced to 
restore causality. Therefore it is imperative that second order dis-
sipative hydrodynamic equations should be employed in order to 
correctly describe the evolution of the QGP. However, the IS formu-
lation of a causal theory of relativistic hydrodynamics from kinetic 
theory, contains several inconsistencies and approximations, the 
resolution of which is currently an active research area [26–38].
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In order to formulate a causal theory of relativistic dissipative 
hydrodynamics from kinetic theory, it is desirable to first specify 
the form of the non-equilibrium phase–space distribution func-
tion. For a system close to local thermodynamic equilibrium, the 
non-equilibrium corrections to the distribution function can be 
obtained using either (i) Grad’s moment method [23] or (ii) the 
Chapman–Enskog method [39]. Although both methods involve ex-
panding the distribution function around its equilibrium value, it 
has been demonstrated that the Chapman–Enskog method in the 
relaxation time approximation results in a better agreement with 
microscopic Boltzmann simulations [32,33] as well as with exact 
solutions of the Boltzmann equation in the relaxation-time approx-
imation [32–36].

In the absence of conserved charges, the Chapman–Enskog 
method has been used to compute the second-order transport co-
efficients for vanishing [32–34] as well as finite particle masses 
[35,36]. On the other hand, in the presence of conserved charges 
but for classical particles with vanishing masses, the second-order 
transport coefficients corresponding to charge diffusion (or alter-
natively heat conduction) have been obtained by employing the 
moment method [40,41]. However, they still remain to be de-
termined for quantum statistics. Here, we employ the Chapman–
Enskog method to achieve this.

In this Letter, we present the derivation of second-order evolu-
tion equations for shear stress tensor and dissipative charge cur-
rent for a system consisting of massless quarks and gluons. In 
order to obtain the form of the non-equilibrium distribution func-
tion, we employ a Chapman–Enskog like expansion to iteratively 
solve the Boltzmann equation in the relaxation time approximation 
[32]. Using this expansion, we derive the first-order constitutive re-
lations and subsequently the second-order evolution equations for 
the dissipative quantities. The transport coefficients are obtained 
exactly using quantum statistics for the quark and gluon phase–
space distribution functions with a non-vanishing quark chemical 
potential. Moreover, we show that, up to second-order in the gra-
dient expansion, the evolution equations for the shear stress tensor 
and the dissipative charge current can be decoupled. We also find 
that, for large values of the ratio of chemical potential to temper-
ature, the charge conductivity is small compared to the coefficient 
of shear viscosity. Finally we demonstrate that the limiting be-
haviour of the heat conductivity to shear viscosity ratio, obtained 
here in the relaxation-time approximation, is qualitatively identical 
to that of a conformal fluid in the strong coupling limit.

2. Relativistic hydrodynamics

In the case of massless partons, i.e., massless quarks and glu-
ons, the conserved energy–momentum tensor and the net-quark 
current can be expressed in terms of the single particle phase–
space distribution function as [42]

T μν =
∫

dp pμpν
[

gq( fq + fq̄) + gg f g
]

= εuμuν − P�μν + πμν, (1)

Nμ =
∫

dp pμ
[

gq( fq − fq̄)
] = nuμ + nμ, (2)

where dp = dp/[(2π)3|p|], pμ is the particle four momenta, and 
gq and gg are the quark and gluon degeneracy factor, respectively. 
Here fq , fq̄ , and f g are the phase–space distribution functions for 
quarks, anti-quarks, and gluons. In the tensor decompositions, ε , P , 
and n are the energy density, pressure, and the net quark number 
density. The projection operator �μν = gμν − uμuν is orthogo-
nal to the hydrodynamic four-velocity uμ defined in the Landau 

frame: T μνuν = εuμ . We work with the Minkowskian metric ten-
sor gμν ≡ diag(+, −, −, −).

The dissipative quantities in Eqs. (1) and (2) are the shear stress 
tensor πμν and the particle diffusion current nμ . With the defini-
tion of the energy–momentum tensor in Eq. (1), the bulk viscous 
pressure vanishes in the massless case. The energy–momentum 
conservation, ∂μT μν = 0, and particle four-current conservation, 
∂μNμ = 0, yields the fundamental evolution equations for ε , uμ

and n, as

ε̇ + (ε + P )θ − πμνσμν = 0, (3)

(ε + P )u̇α − ∇α P + �α
ν ∂μπμν = 0, (4)

ṅ + nθ + ∂μnμ = 0. (5)

Here we use the standard notation Ȧ = uμ∂μ A for co-moving 
derivatives, θ ≡ ∂μuμ for the expansion scalar, σμν ≡ 1

2 (∇μuν +
∇νuμ) − 1

3 θ�μν for the velocity stress tensor, and ∇α = �μα∂μ

for space-like derivatives.
In the following, we briefly outline the thermodynamic proper-

ties of a QGP in equilibrium. In this case, the phase–space distri-
bution functions for quarks, anti-quarks and gluons are given by

f (0)
q = 1

exp(β u · p − α) + 1
, (6)

f (0)

q̄ = 1

exp(β u · p + α) + 1
, (7)

f (0)
g = 1

exp(β u · p) − 1
, (8)

respectively, where u · p ≡ uμpμ , β = 1/T is the inverse tempera-
ture and α = μ/T is the ratio of the quark chemical potential to 
temperature. We consider vanishing chemical potential for gluons 
because they are unconstrained by the conservation laws.

The temperature, T , and chemical potential, μ, of the system 
are determined by the matching condition ε = ε0 and n = n0, 
where ε0 and n0 are the energy density and the net quark number 
density in equilibrium. The energy density, pressure and the net 
quark number density for a system of massless quarks and gluons 
in equilibrium are given by

ε0 ≡ uμuν

∫
dp pμpν

[
gq

(
f (0)
q + f (0)

q̄

)
+ gg f (0)

g

]

= (4gg + 7gq)π
2

120
T 4 + gq

4
T 2μ2 + gq

8π2
μ4 (9)

P0 ≡ −1

3
�μν

∫
dp pμpν

[
gq

(
f (0)
q + f (0)

q̄

)
+ gg f (0)

g

]

= (4gg + 7gq)π
2

360
T 4 + gq

12
T 2μ2 + gq

24π2
μ4 (10)

n0 ≡ uμ

∫
dp pμ

[
gq

(
f (0)
q − f (0)

q̄

)]
= gq

6
T 2μ + gq

6π2
μ3. (11)

The equilibrium entropy density then becomes

s0 ≡ ε0 + P0 − μn0

T
= (4gg + 7gq)π

2

90
T 3 + gq

6
Tμ2. (12)

The above expressions for ε0, P0, n0, and s0 can also be ob-
tained directly from the partition function of an ideal QGP [42],

ln Z = V

T

[
(4gg + 7gq)π

2

360
T 4 + gq

12
T 2μ2 + gq

24π2
μ4

]
, (13)
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