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We study inflation on a non-commutative space–time within the framework of enveloping algebra 
approach which allows for a consistent formulation of general relativity and of the standard model of 
particle physics. We show that within this framework, the effects of the non-commutativity of spacetime 
are very subtle. The dominant effect comes from contributions to the process of structure formation. 
We describe the bound relevant to this class of non-commutative theories and derive the tightest bound 
to date of the value of the non-commutative scale within this framework. Assuming that inflation took 
place, we get a model independent bound on the scale of space–time non-commutativity of the order of 
19 TeV.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The idea of space–time non-commutativity dates back to the 
early days of quantum field theory when it was hoped that it may 
help to make sense of UV divergences which are intrinsic to this 
framework [1,2]. With the advent of renormalization and the proof 
that physically relevant Yang–Mills theories were renormalizable, 
non-commutative gauge theories lost much of their appeal. How-
ever, there was a renewal of interest for such theories when they 
reappeared as a certain limit in string theory [3,4]. In [4], it was 
shown that the end points of open strings ending on a Dp-brane 
with a Neveu–Schwarz two form flux B background do not com-
mute. String theory has an additional symmetry transformation 
known as T-duality, which relates geometric structures in different 
topologies. It naturally gives rise to non-commutative geometry. In-
dependently of string theory, quantum gravity is likely to involve 
the notion of a minimal length, see e.g. [5,6], which could imply a 
non-commutativity of space–time at short distances. This may help 
to alleviate the problem of the non-renormalizability of perturba-
tive quantum gravity.

There are different approaches to non-commutative geometry, 
which can be divided in roughly two classes. The first approach is 
due to Alain Connes. It is based on the notion of the spectral triple 
and has its origin in mathematical physics. The second approach 
indeed goes back to Moyal and Groenewold [1,2] and emphasizes 
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that space–time itself might be non-commutativity at short dis-
tance. The non-commutativity of space–time leads to issues with 
space–time and gauge symmetries. There are two distinct ways to 
deal with these issues. One is to take gauge fields to be as usual 
Lie algebra valued and to restrict the gauge symmetries which can 
be considered (see e.g. [4]). The other one is to take gauge fields 
in the enveloping algebra which enables one to consider any gauge 
group with any representation for the matter fields [7–11]. In this 
article, we will consider the latter approach and derive the tightest 
bound to date on the non-commutative scale within this approach.

We shall focus here on the simplest model of space–time non-
commutativity which has been extensively studied and will con-
sider non-commuting coordinates with a canonical structure

[x̂μ, x̂ν ] = iθμν, (1)

where θμν is a constant tensor of mass dimension −2.
Our aim is to investigate effects of space–time non-commuta-

tivity in the early universe. We thus have to select a framework 
which enables us to formulate both field theories and general rela-
tivity on a non-commutative space–time. While there are different 
approaches to space–time non-commutativity, there is only one 
which leads to the well-known standard model of particle physics 
and general relativity in the low energy regime. We shall thus use 
the enveloping algebra approach [7–11] which enables one to for-
mulate any gauge theory including arbitrary representations for 
the gauge and matter fields on a non-commutative space–time. 
This approach has led to a consistent formulation of the stan-
dard model of particle physics on such a space–time [12]. Treating 
General Relativity as a gauge theory, one can also formulate Gen-
eral Relativity on a non-commutative space–time [13–15]. It turns 

http://dx.doi.org/10.1016/j.physletb.2015.06.033
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2015.06.033
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:x.calmet@sussex.ac.uk
mailto:c.fritz@sussex.ac.uk
http://dx.doi.org/10.1016/j.physletb.2015.06.033
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.06.033&domain=pdf


X. Calmet, C. Fritz / Physics Letters B 747 (2015) 406–409 407

out that one needs to limit general coordinate transformations to 
those which are volume preserving diffeomorphisms. This leads 
to unimodular gravity which is known to be, at least classically, 
equivalent to general relativity. Following the enveloping algebra 
approach has several benefits. First of all, it makes use of real sym-
metries which imply a conserved charged via Noether’s theorem. 
Such theories have an exact space–time symmetry [16,17] which 
corresponds to Lorentz invariance in the limit of θμν → 0. The im-
plication of this symmetry is that all the bounds on space–time 
non-commutativity are weak [18], typically of the order of a TeV 
[19,20].

Using this framework, we will consider inflation and the cosmic 
microwave background on a non-commutative space–time. There 
are many attempts to study inflation in the context of a non-
commutative space–time [21–29],1 but as far as we know this 
is the first study of early universe physics using the enveloping 
algebra approach which allows to study in details the effects of 
the non-commutativity of space–time on the metric. As an exam-
ple we will consider chaotic inflation [30] on a non-commutative 
space–time and show that the effects of non-commutativity van-
ish both for the scalar field and for the metric. This is a rather 
surprising and interesting result since one might have expected 
that a preferred direction in space–time could lead to large effects 
in the slow role parameters since inflation could have exponen-
tially increased the original asymmetry in space–time. We then 
consider the effects of space–time non-commutativity on the CMB 
which are this time non-vanishing. This is not surprising as non-
commutative gauge theories are a special case of non-local theories 
which are known to affect the CMB. We derive the tightest bound 
to date on the scale of space–time non-commutativity within this 
framework.

2. Theoretical framework

We consider here the algebra Â of non-commutative space–
time coordinates {x̂μ} satisfying the canonical relation

[x̂μ, x̂ν ] = iθμν, (2)

where θ ∈ �2(TM) is a constant tensor and can be locally ex-
pressed as θ = θμν∂μ ⊗ ∂ν with θμν = −θνμ . As usual, we want to 
represent functions in Â as elements in the space of linear com-
plex functions F . To do so we introduce the Moyal star product

( f1 · f2)(x̂)

= ( f1 � f2)(x)

=
∞∑

n=0

(
i

2

)n 1

n!θ
μ1ν1 · · · θμnνn∂μ1 · · · ∂μn f1∂ν1 · · · ∂νn f2. (3)

Before continuing on to the main discussion, it will be useful to 
note some useful properties of the star product. Firstly, under com-
plex conjugation one has

( f1 � f2)
∗ = f ∗

2 � f ∗
1 . (4)

Secondly, the trace property under integration implies that∫
d4x( f1 � f2)(x) =

∫
d4x( f1 · f2)(x) (5)

and more generally, one also has the cyclicity property

1 These previous studies have mainly focussed on a non-commutative inflaton 
without considering non-commutative effects in the gravity sector. They have ob-
tained bounds of the order of 10 TeV.

∫
d4x( f1 � · · · � fn)(x)

=
∫

d4x( f1 � · · · � fm−1) · ( fm � · · · � fn)(x)

=
∫

d4x( fm � · · · � fn) · ( f1 � · · · � fm−1)(x). (6)

It is important to note, given that θ is constant, that this theory 
violates general diffeomorphism invariance. However, as shown in 
[13] we may recover a reduced group of diffeomorphisms compat-
ible with (2) parametrized by

x̂′μ = x̂μ + ξ̂μ. (7)

A subset of these transformations given by

ξ̂μ = θμν∂ν f̂ (x̂) (8)

leaves [x̂μ, ̂xν ] = iθμν invariant. We shall thus only consider such 
transformations. Note that the Jacobian of these transformations
is equal to one. The transformations which preserve the non-
commutative algebra correspond to the reduced group of diffeo-
morphisms which are volume preserving. In other words, on a 
non-commutative space–time, we are forced to consider unimod-
ular gravity. This is the main difference between our work and 
precious attempts at formulating inflation on a non-commutative 
space–time [22,25,26,31]. The approach to general relativity on a 
non-commutative space–time formulated in [13] relies on gaug-
ing a local SO(3, 1) (the tetrad approach). The local SO(3, 1) gauge 
symmetry is implemented using the enveloping algebra approach. 
This means that the gauge fields are assumed to be in the en-
veloping algebra instead of the usual Lie algebra. The local gauge 
invariance is enforced using the Seiberg–Witten maps order by or-
der in θ [13]. We now have all the tools needed to formulate a 
consistent scalar field action in a curved space–time on a non-
commutative space–time.

3. Non-commutative scalar action

We consider inflation driven a single scalar field with a poten-
tial V (φn) and denote for convenience φ ≡ φ(x). In the commuta-
tive case, the action may be written

S =
∫

d4xe

(
1

2
∂μφ∂μφ − 1

2
m2φ2 −

∑
n

cn
φn

	(n−4)

)
, (9)

where e is the tetrad determinant, 	 is an energy scale and cn

are dimensionless Wilson coefficients of order unity. The choice of 
this frame follows from the derivation of non-commutative general 
relativity from the Seiberg–Witten map, as in [13,14], for which 
gravity is treated as a gauge theory. Another reason is that when 
mapping quantities on to a non-commutative space, it is very dif-
ficult to do so for a square root (which may not even exist in Aθ ) 
and e is used as an effective way to represent

√
g. Setting the 

tetrad determinant to one, the action for the non-commutative 
scalar field may be written

S =
∫

d4x

(
1

2
Gμν � ∂μφ � ∂νφ

− 1

2
m2φ � φ −

∑
n

cn
φn�

	(n−4)

)
. (10)

One might be tempted to take ∂μφ � ∂μφ and use (5) to 
eliminate the star product, as is done with, e.g., the mass term. 
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