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Using the Dirac–Brueckner–Hartree–Fock approach, the properties of neutron-star matter including 
hyperons are investigated. In the calculation, we consider both time and space components of the vector 
self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of 
baryons is partly taken into account. We obtain the maximum neutron-star mass of 2.08M� , which is 
consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body 
force for hyperons in matter.
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Neutron stars may be the most dense and exotic state of nu-
clear matter, and its core serves as a natural laboratory to in-
vestigate the nuclear matter whose density reaches several times 
higher than the normal nuclear-matter density, n0

B [1]. In fact, 
the recently observed, massive neutron stars, J1614-2230 (the 
mass of 1.97 ± 0.04 M� , M�: the solar mass) [2] and J0348+0432 
(2.01 ± 0.04 M�) [3], have provided important information on the 
equation of state (EoS) for dense nuclear matter.

To understand these heavy objects, various nuclear models have 
been examined, in which relativistic mean-field theory (RMFT) is 
very popular and has been successfully applied to the dense nu-
clear matter [4]. However, in RMFT, nucleon (N)-nucleon short-
range correlations in matter cannot be treated. In contrast, in the 
Dirac–Brueckner–Hartree–Fock (DBHF) approach, although the cal-
culation is involved, one can consider the effects of the Pauli ex-
clusion principle and short-range correlations.

Until now, several groups have performed the DBHF calculations 
not only in the region around n0

B but also in matter at higher den-
sities (see Refs. [5–15]). However, so far there has not been any 
relativistic attempt to take account of the degrees of freedom of 
hyperons (Ys) as well as nucleons in dense matter. Because it is 
quite interesting to see how hyperons contribute to the EoS and 
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to the maximum mass of neutron stars, it seems very urgent to 
perform the DBHF calculation for matter including hyperons.

In this Letter, we study such dense neutron-star matter using 
the DBHF approach. Here, we particularly pay attention to the fol-
lowing two points: (1) the space component of vector self-energy 
of baryon (B), �V

B , is taken into account, because, although it is 
certainly small at low density, it is expected to be important in 
dense matter, (2) as in Refs. [13–15], we partly consider the ef-
fect of negative-energy states of baryons in the Bethe–Salpeter 
(BS) equation to remove the ambiguity in the relationship between 
the on-shell T-matrix for baryon–baryon scattering and the baryon 
self-energies [8–10]. Furthermore, when hyperons take place in 
matter, the effective masses of interacting two baryons become 
very different from each other, and thus we should treat the 
baryon-mass difference in the BS equation explicitly.

We now start with the self-energy of baryon in the rest frame 
of infinite, uniform nuclear matter. It is given by

�B(k) = � S
B(k) − γ0�

0
B(k) + γ · k�V

B (k), (1)

where k (k) is the three (four) momentum of baryon. Here, 
�

S (0) [V ]
B is the scalar (zero-th component of vector) [space com-

ponent of vector] part of baryon self-energy. Using these self-
energies, the effective mass, M∗

B , the effective momentum, k∗
B , and 

the effective energy, E∗
B , in matter are defined by

M∗
B(k) ≡ MB + � S

B(k), k∗
B ≡ k[1 + �V

B (k)],
E∗

B(k) ≡
√

k∗2
B + M∗2

B (k), (2)
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with MB being the free baryon mass. Then, the baryon spinor 
states with positive or negative energy are respectively constructed 
as

�B(k, s) =
√

M∗
B(k) + E∗

B(k)

(
χs,

k∗
B ·σ

M∗
B (k)+E∗

B (k)
χs

)
, (3)

�B(k, s) =
√

M∗
B(k) + E∗

B(k)

( k∗
B ·σ

M∗
B (k)+E∗

B (k)
χ−s

χ−s

)
, (4)

where σ is the Pauli matrix, and χs denotes a 2-component Pauli 
spinor.

In the conventional DBHF calculation, the baryon–baryon scat-
tering is usually evaluated in the center of mass frame with re-
spect to the interacting two baryons. In such cases, instead of 
Eqs. (3)–(4), the helicity spinors and the partial-wave decompo-
sition are often used to solve the BS equation [5–11,13–15]. How-
ever, when �V

B remains finite and k �= k∗
B , although k and k∗

B are 
parallel with each other in the nuclear-matter rest frame, they are 
not in the center of mass frame. It is thus more convenient to per-
form the calculation with the standard spinors, Eqs. (3)–(4), in the 
nuclear-matter rest frame, rather than with the helicity spinors in 
the center of mass frame.

Furthermore, the inclusion of negative-energy states of baryon 
in the BS amplitude may be necessary to remove the ambiguity of 
the relationship between the reaction matrices for baryon–baryon 
scattering and the baryon self-energies [13–15]. Thus, we here de-
fine four reaction amplitudes

T B ′′′ B ′′ B ′ B(k′,k, s′′′, s′′, s′, s; P )

≡ �̄B ′′′
(

1

2
P + k′, s′′′

)
�̄B ′′

(
1

2
P − k′, s′′

)

× � �B ′
(

1

2
P + k, s′

)
�B

(
1

2
P − k, s

)
, (5)

R B ′′′ B ′′ B ′ B(k′,k, s′′′, s′′, s′, s; P )

≡ �̄B ′′′
(

1

2
P + k′, s′′′

)
�̄B ′′

(
1

2
P − k′, s′′

)

× � �B ′
(

1

2
P + k, s′

)
�B

(
1

2
P − k, s

)
, (6)

O B ′′′ B ′′ B ′ B(k′,k, s′′′, s′′, s′, s; P )

≡ �̄B ′′′
(

1

2
P + k′, s′′′

)
�̄B ′′

(
1

2
P − k′, s′′

)

× � �B ′
(

1

2
P + k, s′

)
�B

(
1

2
P − k, s

)
, (7)

P B ′′′ B ′′ B ′ B(k′,k, s′′′, s′′, s′, s; P )

≡ �̄B ′′′
(

1

2
P + k′, s′′′

)
�̄B ′′

(
1

2
P − k′, s′′

)

× � �B ′
(

1

2
P + k, s′

)
�B

(
1

2
P − k, s

)
, (8)

where � represents the effective reaction operator, and these am-
plitudes satisfy the following, coupled BS equations

T B B ′ B B ′(k,k, s, s′, s, s′; P )

= V̄ B B ′ B B ′(k,k, s, s′, s, s′; P )

+
∑

s′′s′′′ B ′′ B ′′′

∫
d3q

(2π)4
V̄ B B ′ B ′′ B ′′′(k,q, s, s′, s′′, s′′′; P )

× Q B ′′ B ′′′(P ,q)gT h B ′′ B ′′′(P ,q)

× T B ′′ B ′′′ B B ′(q,k, s′′′, s′′, s, s′; P ), (9)

R B B ′ B B ′(k,k, s, s′, s, s′; P )

= Ū B B ′ B B ′(k,k, s, s′, s, s′; P )

+
∑

s′′s′′′ B ′′ B ′′′

∫
d3q

(2π)4
Ū B B ′ B ′′ B ′′′(k,q, s, s′, s′′, s′′′; P )

× Q B ′′ B ′′′(P ,q)gT h B ′′ B ′′′(P ,q)

× T B ′′ B ′′′ B B ′(q,k, s′′′, s′′, s, s′; P ), (10)

O B B ′ B B ′(k,k, s, s′, s, s′; P )

= W̄ B B ′ B B ′(k,k, s, s′, s, s′; P )

+
∑

s′′s′′′ B ′′ B ′′′

∫
d3q

(2π)4
V̄ B B ′ B ′′ B ′′′(k,q, s, s′, s′′, s′′′; P )

× Q B ′′ B ′′′(P ,q)gT h B ′′ B ′′′(P ,q)

× O B ′′ B ′′′ B B ′(q,k, s′′′, s′′, s, s′; P ), (11)

P B B ′ B B ′(k,k, s, s′, s, s′; P )

= Z̄ B B ′ B B ′(k,k, s, s′, s, s′; P )

+
∑

s′′s′′′ B ′′ B ′′′

∫
d3q

(2π)4
Ū B B ′ B ′′ B ′′′(k,q, s, s′, s′′, s′′′; P )

× Q B ′′ B ′′′(P ,q)gT h B ′′ B ′′′(P ,q)

× O B ′′ B ′′′ B B ′(q,k, s′′′, s′′, s, s′; P ), (12)

with V̄ , Ū , W̄ and Z̄ being the anti-symmetrized matrices of one-
boson-exchange (OBE) interaction [16] with respect to the positive-
and negative-energy states (as seen in Eqs. (5)–(8)).

In Eqs. (9)–(12), Q B B ′ is the Pauli exclusion operator for 
baryons B and B ′ , and gT hB B ′ denotes the Thompson’s two-
particle propagator [17]. The seven arguments in the four reac-
tion amplitudes, T , R, O , P , are as follows: from left to right, 
the first variable represents the final (or intermediate) relative 
three-momentum; the second, the initial (or intermediate) rela-
tive three-momentum; the third and fourth are for the spins of 
the final (or intermediate) two baryons, each of which is up (+) or 
down (−); the fifth and sixth, the spins of the initial (or intermedi-
ate) two baryons; and the last one is the total three-momentum of 
interacting two baryons. We note that the negative-energy states 
appear only in the initial and/or final states of the BS amplitudes, 
and they are not included in the intermediate states, because, in 
the realistic baryon–baryon potentials such as the Bonn potentials, 
the negative-energy states are usually not considered [13,14].

The ladder-approximated, coupled BS equations can be numer-
ically solved in the nuclear-matter rest frame. To reduce the num-
ber of variables and make the present calculation feasible, we here 
average the azimuthal angle in the spinors, Eqs. (3)–(4), namely we 
replace E∗

B(1/2P ± k) by the averaged one, 1
2π

∫
dφE∗

B(1/2P ± k). 
We have checked that this change does not lead any large numer-
ical error in our final results.

Given the reaction amplitudes, we can calculate the following 
components [14]

�B
��(k) ≡ �̄B(k,+)�B(k)�B(k,+)

= 2M∗
B(k)� S

B(k) − 2E∗
B(k)�0

B(k) + 2k · k∗
B�V

B (k), (13)

�B
��(k) ≡ �̄B(k,+)�B(k)�B(k,−)

= 2|k∗
B |(k)�0

B(k) − 2|k|E∗
B(k)�V

B (k), (14)

�B
��(k) ≡ �̄B(k,+)�B(k)�B(k,+)

= −2M∗
B(k)� S

B(k) − 2E∗
B(k)�0

B(k) + 2k · k∗
B�V

B (k), (15)
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