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We consider first the standard model Lagrangian with μ2
h Higgs potential term set to zero. We point 

out that this classically scale invariant theory potentially exhibits radiative electroweak/scale symmetry 
breaking with very high vacuum expectation value (VEV) for the Higgs field, 〈φ〉 ≈ 1017–18 GeV. 
Furthermore, if such a vacuum were realized then cancellation of vacuum energy automatically implies 
that this nontrivial vacuum is degenerate with the trivial unbroken vacuum. Such a theory would 
therefore be critical with the Higgs self-coupling and its beta function nearly vanishing at the symmetry 
breaking minimum, λ(μ = 〈φ〉) ≈ βλ(μ = 〈φ〉) ≈ 0. A phenomenologically viable model that predicts this 
criticality property arises if we consider two copies of the standard model Lagrangian, with exact Z2
symmetry swapping each ordinary particle with a partner. The spontaneously broken vacuum can then 
arise where one sector gains the high scale VEV, while the other gains the electroweak scale VEV. The 
low scale VEV is perturbed away from zero due to a Higgs portal coupling, or via the usual small Higgs 
mass terms μ2

h , which softly break the scale invariance. In either case, the cancellation of vacuum energy 
requires Mt = (171.53 ± 0.42) GeV, which is close to its measured value of (173.34 ± 0.76) GeV.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The discovery of a Higgs-like particle [1,2] with mass around 
125 GeV confirms the standard picture of electroweak symmetry 
breaking via the nonzero vacuum expectation value of a scalar 
field [3]. This nontrivial vacuum arises from a Higgs potential, of 
the form:

V = λφ†φφ†φ − μ2
hφ†φ + hμ4

h , (1)

where the hμ4
h part is the cosmological constant (CC) term, usually 

neglected as it only affects gravitational physics, e.g. [4,5]. In mod-
els with classical scale invariance, however, the CC term is absent, 
as required by this symmetry. The physical cosmological constant 
still arises radiatively, but is a calculable function of the other pa-
rameters of the theory [6].

Interestingly, a possible hint of a deeper structure beyond 
the standard model has emerged in a rather unexpected man-
ner. The Higgs quartic coupling when evolved up to a high scale 
∼ 1017–18 GeV, appears to approximately satisfy: λ = λ̇(≡ βλ) = 0
(for recent calculations, see [7,8]). This condition seems to be ac-
cidental, since it involves cancellation among numerically large 
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quantities.1 In this short note, we show that such a relation can 
naturally arise in scale invariant models as a consequence of set-
ting the physical cosmological constant to its measured small 
value. This then automatically implies that two distinct vacua with 
broken and unbroken symmetries coexists in the theory, that is, 
the theory exhibits criticality. We consider cases of exact classical 
scale invariance and also the case where scale invariance is con-
sidered to be softly broken by the familiar μ2

h term in the Higgs 
potential.

Let us define the scale invariant standard model Lagrangian, 
LSI

SM , to be the same as the standard model Lagrangian except with 
the μ2

h term set to zero. The Higgs potential is then particularly 
simple:

V = λφ†φφ†φ . (2)

A Coleman–Weinberg analysis [12,13], reveals that such a po-
tential, radiatively corrected, can exhibit spontaneous symmetry 
breaking. This requires λ(μ) to be small at some particular scale 
μ = μ1, and μ1 sets the scale of the VEV of φ. If we addition-
ally require that the CC vanish, then we have much more stringent 

1 Previous attempts to justify these conditions were based on somewhat obscure 
principle of multiple criticality [9] and still controversial proposal of asymptotic 
safety of gravity [10]. See also [11].
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constraints for spontaneous symmetry breaking to occur [6]. To ex-
plain what these are, let us first write the exact (all loop) effective 
potential as:

V = A(ga(μ),mx(μ),μ)φ†φφ†φ

+ B(ga(μ),mx(μ),μ)φ†φφ†φ log

(
φ†φ

μ2

)

+ C(ga(μ),mx(μ),μ)φ†φφ†φ

[
log

(
φ†φ)

μ2

)]2

+ . . . , (3)

where . . . denotes all terms with higher-power logarithms and 
ga(μ) and mx(μ) denote all relevant running dimensionless cou-
plings and effective masses. Then it can easily be shown that the 
requirement of a nontrivial vacuum, 〈φ〉 �= 0, and vanishing CC re-
quire the condition:

A(ga(μ),mx(μ),μ) = B(ga(μ),mx(μ),μ) = 0 (4)

to hold at the same renormalization scale μ = μ1. Furthermore 
this renormalization scale defines the VEV of φ at that scale. Note 
that the renormalization scale independence of the effective po-
tential implies that:

B(μ = μ1) = 1

2
μ

dA

dμ

∣∣∣∣
μ=μ1

,

C(μ = μ1) = 1

4
μ

dB

dμ

∣∣∣∣
μ=μ1

. (5)

The condition that A = B = 0 at the same renormalization scale 
μ = μ1 implies that λ 	 0 and λ̇ 	 0 at that renormalization scale. 
Interestingly it has been observed that such a condition is nearly 
satisfied given the parameters of the standard model. However, one 
finds that the scale, μ1 is very high, ∼ 1017–18 GeV, that is possibly 
as high as the Planck scale. Thus, it appears that the scale invariant 
standard model may exhibit spontaneous symmetry breaking, but 
with very high VEV scale, 〈φ〉 ≈ 1017–18 GeV.

This spontaneously broken phase, is degenerate with the un-
broken phase where φ = 0. Could it be possible that there is a 
second copy of the standard model, i.e. mirror model with exact 
Z2 invariant Lagrangian [14], where the Z2 symmetry is sponta-
neously broken? That is, where one copy gets a zero VEV and the 
other at a large scale, μ1 ≈ 1017–18 GeV? A small portal coupling 
κφ†φφ′ †φ′ [the particles of the copy are denoted with a prime (′)] 
could then perturb the zero VEV of φ, to be nonzero, and thus be 
responsible for electroweak symmetry breaking. This could work 
if κ > 0 at the high scale, μ1, and κ < 0 at the electroweak scale. 
Since the required value of κ is very small at the electroweak scale 
(κ ∼ 10−31±1)), it is possible that quantum gravitational correc-
tions contribute to the running of κ and could lead to its change in 
sign at the high scale cf. with the low scale.2 Such a model could 
also be technically natural, despite the high scale (for discussions 
along these lines see [16,17] and references there-in).

The scale invariant standard model squared has Lagrangian:

L = LSI
SM(e, u,d, γ , . . .) +LSI

SM(e′, u′,d′, γ ′, . . .) +Lint . (6)

2 The one-loop gravitational correction to the beta-function for κ has the form: 
c1κμ2/M2

P +c2μ
4/M4

P , where c1 and c2 are some constants and μ is the renormal-
ization scale. Note that for sizeable κ the first term dominates and preserves κ = 0
fixed-point of non-gravitational renormalization group running (see, e.g., [15]). 
However, for tiny values of κ considered in this paper, the second term becomes 
significant even at scales well below the Planck mass, μ � κ1/4 M P . If dominant, 
this contribution may indeed turn κ to be positive at high scales.

The Lagrangian Lint contains the Higgs portal interaction and, po-
tentially, also gauge kinetic mixing. The potential for this scale 
invariant standard model squared is just the obvious generalization 
of Eq. (3), with A′, B ′, C ′ parameterizing the corresponding terms 
for φ′ . At the high scale, μ = μ1, the quantum corrected effective 
potential has a particularly simple form. Given that the extremum 
and CC conditions require that A′ = B ′ = 0 (at that scale), the Z2
symmetry also implies A = B = 0, C ′ = C (at that scale). It follows 
that

V = Cφ†φφ†φ
[

log(φ†φ/μ2
1)

]2

+ Cφ′ †φ′φ′ †φ′ [log(φ′ †φ′/μ2
1)

]2 + κφ′ †φ′φ†φ . (7)

The leading order contribution to C arises at two loops and is 
given by:

C (2)(μ = μ1)

= 1

64π2μ4
1

[
3Trm4

V γV + Trm4
SγS − 4Trm4

F γF

]∣∣∣
μ=μ1

, (8)

where γx = ∂ ln mx/∂ lnμ (x = V , S, F ). As discussed in the previ-
ous paragraph, we assume κ > 0 at the high scale μ = μ1. If C > 0
at the scale μ = μ1, the above potential has the spontaneously 
broken vacuum 〈φ′〉 = μ1, 〈φ〉 = 0 (where the VEV’s are running 
parameters defined at the scale μ = μ1), as well as a degenerate 
unbroken vacuum: 〈φ′〉 = 〈φ〉 = 0.

The Pseudo Goldstone Boson (PGB) of scale invariance, mPGB =
∂2 V
∂φ′ 2

0

∣∣∣∣
φ′=μ1

arises at the two-loop level,

m2
PGB = 4C(μ = μ1)μ

2
1 . (9)

Considering only the dominant (W ′, Z ′ and t′) contributions, we 
have

C (2) = 1

64π2μ4
1

{
6M4

W γW + 3M4
ZγZ − 12M4

t γt

}

= 1

64π2μ4
1

{
6M4

W
βg2

g2
+ 3M4

Z

[
cos2 θw

βg2

g2
+ sin2 θw

βg1

g2

]

− 12M4
t
βyt

yt

}
(10)

where g1, g2, yt and the U (1), SU(2) gauge couplings and t
Yukawa coupling (tan θw ≡ g1/g2) evaluated at the high scale, 
μ = μ1. In deriving Eq. (10) we have used the relation A(μ1) =
B(μ1) = 0. Also, the beta functions are defined by: βX ≡ ∂ X/∂ lnμ. 
Evaluating C (2) at the scale μ = μ1 we find that C (2) ≈ 2 × 10−5, 
and thus the PGB mass is around mPGB ≈ 10−2μ1 ∼ 1016 GeV.

At the low scale μ ∼ 100 GeV, a non-zero VEV of φ is induced 
via the portal coupling κ , provided κ < 0 at this scale. Indeed at 
this low scale the part of the potential involving φ has the approx-
imate form:

V = λφ†φφ†φ + κφ†φφ′ †φ′ . (11)

We expect that 〈φ′〉, evaluated as a function of renormalization 
scale, μ, does not greatly change in going from the high scale to 
the low scale. This means that the φ part of the potential, at the 
electroweak renormalization scale, is just:

V = λφ†φφ†φ − μ2
hφ†φ (12)

where

μ2
h = −κμ2

1 = −κ(〈φ′〉)2 . (13)



Download English Version:

https://daneshyari.com/en/article/1852698

Download Persian Version:

https://daneshyari.com/article/1852698

Daneshyari.com

https://daneshyari.com/en/article/1852698
https://daneshyari.com/article/1852698
https://daneshyari.com

