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A class of effective field theories for moduli or collective coordinates on solitons of generic shapes is 
constructed. As an illustration, we consider effective field theories living on solitons in the O(4) non-linear 
sigma model with higher-derivative terms.
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1. Introduction

Effective field theory is one of the most useful tools available 
to date. Even the standard model, although renormalizable in its 
present formulation, may also be just an effective theory of Nature 
where possible supersymmetric and/or grand unified extensions 
have been integrated out. For particles of accessible energies, we 
can neglect gravity and consider particles on flat space as an (ex-
tremely) good approximation. This is just a consequence of the 
separation of scales between the particle mass and energy versus 
the scale of gravity, i.e. the Planck mass. Light fields do not only 
exist in all of spacetime but are sometimes confined to certain 
subspaces. For solitons hosting moduli, there is again a situation 
where separation of scales can be exploited; namely the mass of 
the soliton versus massless or light moduli. Effective field theo-
ries for moduli have been constructed for many kinds of solitons, 
but very often only in cases where the soliton has a simple, flat 
or straight shape. As examples, the effective actions for monopole 
moduli [1], domain-wall moduli [2–5] and for orientational mod-
uli of non-Abelian strings [6,4,5,7] have been constructed. When 
solitons are particle-like such as monopoles this can describe the 
low-energy dynamics of the solitons in a compact way as geodesics 
of moduli spaces [1], while for solitons being extended objects 
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such as domain walls or vortices, this describes field theories on 
their world-volume, as in the case of D-branes in string theory 
or more general branes. Solitons can, however, generically possess 
much more complicated shapes.

In this Letter we construct a first attempt of effective field the-
ories in principle applicable to solitons of generic shapes and apply 
it to a class of models possessing soliton solutions of flat, spherical, 
cylindrical and toroidal shapes.

2. General considerations

Here we will consider a generalized framework where we ex-
pand a set of fields in eigenmodes as [2]

�a =
∑

n

Mn(eα)ζ a
n (ei), (1)

where ζn are eigenfunctions, Mn are moduli fields, while eα and 
ei are sets of vectors in transverse (world-volume) dimensions 
(α = 0, 1, . . . t) and codimensions (i = t + 1, . . . t + c), respectively, 
of a soliton of a generic shape; see Fig. 1. For simplicity we con-
sider only flat space in this Letter and we have made a decomposi-
tion of directions (locally) as Rd,1 =R

t,1 ×R
c , where the d = c + t

spatial dimensions are split into c codimensions and t transverse 
dimensions.

The kinetic term in the underlying theory will give rise to a 
kinetic term for the moduli as∫
ei

|∇μ�|2 ⊃ |∇eαMn|2
∫
ei

|ζn|2 ∝ 1

Mc
|∇eαMn|2, (2)
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Fig. 1. Sketch of a generic soliton profile in direction e3. The moduli b live on the 
manifold spanned by the host soliton. The integration over the codimension is done 
only over a finite range [−�, �], allowing for a generic shape of the host soliton.

where M is a characteristic mass of the soliton system and μ are 
all spacetime indices. For higher-order derivative terms, one simi-
larly obtains e.g.,∫
ei

|∇μ�|2|∇ν�|2 ⊃ |∇eαMn|2
∫
ei

∣∣∇ei ζm
∣∣2 |ζn|2

∝ 1

Mc−2
|∇eαMn|2. (3)

Notice the relative enhancement of this term compared to that 
of (2). The higher-order term induces an enhanced kinetic term 
in the low-energy effective theory living on the soliton.

However, the lower-order term also induces other terms in the 
low-energy effective theory, which will be of higher-order. These 
induced terms are of a different kind as they are higher-order cor-
rections coming from integrating out massive modes propagating 
on the soliton. Let us consider the kinetic term, which would in-
duce something like

1

Mc+2
|∇αMn|2|∇α′Mn′ |2. (4)

This higher-order correction in the effective theory is naturally 
suppressed by (2 powers of) the soliton scale. Whether this term 
will be comparable to the higher-order terms in the theory before 
we take the low-energy limit on the soliton depends on the theory 
and the parameters.

In this Letter, we consider the higher-order terms to be numer-
ically significant and work in the limit of very high soliton mass, 
where we safely can neglect the higher-order corrections coming 
from lower-order terms.1

Let us comment on integrating out the host soliton. We as-
sume that the soliton is extended in the directions spanned by 
{ei} which is taken to be orthogonal to {eα}. However, integrat-
ing over all the subspace spanned by {ei} may be problematic; but 
for physical reasons we need only integrate over the major energy 
peak of the soliton solution (say in the range [−�, �]) on which 
the moduli live and thus neglect the long tales that the soliton may 
possess; see Fig. 1. We do this for physically capturing the low-
energy effective theory on the soliton and in a way that we can 
still use the decomposition of the transverse and world-volume co-
ordinates locally.

Finally, we need to assess the quality of the approximation we 
are making, since we are taking into account corrections propor-
tional to powers of the soliton mass coming from higher-order 
terms. The approximation we are making is a separation of scales 
between the mass of the host soliton and the energies of the 
moduli in the effective action living on the world-volume. The 
higher-order terms, if they have non-negligible coefficients, induce 

1 Needless to say, this may not always be the case, but it is a limit we work in 
here for simplicity.

lower-order terms in the low-energy effective theory on the soli-
ton which are enhanced by a factor of (M/m)δd (where δd is the 
difference in dimension between the higher-order term and the 
lower-order term while m is the typical scale of the moduli). On 
the other hand, as mentioned above, the lower-order terms also 
induce higher-order correction terms which come about from in-
tegrating out massive modes propagating along the soliton. These 
terms are, however, suppressed by a factor of (m/M)2 (or higher). 
It has also been assumed all along that the derivatives in the low-
energy effective theory are not too large. As long as the ratio m/M
is sufficiently small, we can use just the leading-order low-energy 
effective theory.

Higher-order corrections coming from the lower-order terms, 
as mentioned above, can however be calculated systematically [7], 
but we will not consider them in this Letter; i.e., here we present 
only the leading-order effective action.

3. Non-linear sigma model

To illustrate our framework more explicitly, we will now spe-
cialize the considerations presented above to an O(4)-sigma model 
with higher-derivative terms in 3 + 1 flat dimensions, which has 
scalar fields, na , of an O(4) vector, with a = 1, . . . , 4 and Lagrangian 
density

L = −m4 V + c2m2L2 + c4L4 + c6

m2
L6 + · · · (5)

where Ln is the Lagrangian density containing the n-th order 
derivative terms

−L2 = 1

2
∂μn · ∂μn, (6)

−L4 = 1

4

(
∂μn · ∂μn

)2 − 1

4

(
∂μn · ∂νn

)2
, (7)

L6 = BμBμ, Bμ = 1

6
εμνρσ εabcd∂νna∂ρnb∂σ ncnd, (8)

and Bμ is the baryon current. Finally, an appropriate potential 
should be chosen for the soliton under study. There still remains 
a choice to be made, i.e. the codimension of the soliton under 
consideration. Since we consider R3,1 here, there are only two 
non-trivial cases: a codimension-one soliton like a domain wall or 
a codimension-two soliton like a vortex. We will study each in turn 
in the following.

3.1. Codimension-one case

We will now consider the soliton of the type which is described 
by a codimension-one field ζ(e3) and two moduli M1,2(e1, e2), 
where the condensate field is a function of the direction spanned 
by the vector e3 only and the moduli are functions of two orthogo-
nal directions e1 and e2. For concreteness we will parametrize the 
non-linear sigma-model field, n, as

n = {b sin f , cos f }, (9)

where b are scalar fields of a unit 3-vector (b · b = 1) describing 
two moduli and is a function only of the orthogonal directions to 
the field f , i.e. b(e1, e2). The domain solution also possesses a po-
sition modulus, which we will not take into account in this Letter. 
Taking the Lagrangian densities (6)–(8) one-by-one, choosing the 
potential

m2 V = −1

2
m2

3n2
3 + 1

2
M2(1 − n2

4), (10)

and integrating over the codimension spanned by e3, we get
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